人脸特征点检测:SDM

本文介绍了Supervised Descent Method (SDM)及其在人脸特征点检测中的应用。SDM作为非线性优化方法,解决了传统牛顿法在步长计算上的问题。通过对训练数据学习得到的迭代步长,SDM在人脸特征点检测任务上展现出优势,尤其在处理SIFT特征时。实验结果显示SDM在该领域的表现优于当时其他方法。
摘要由CSDN通过智能技术生成

《Supervised Descent Method and its Applications to Face Alignment》论文解读


这篇文章发表于CVPR2013,来自于CMU。论文原文见:

http://www.ri.cmu.edu/publication_view.html?pub_id=7428

概述

许多机器学习问题可以看做是一个非线性优化问题。所谓非线性优化问题就是约束条件或者目标函数是非线性的。通常使用二阶导数的方法进行优化,比如牛顿法。像牛顿法这样的方法缺点有(1)函数可能不可导也不能数值估计(2)需要求Hessian矩阵,Hessian矩阵可能太大而且非正定。本文提出Supervised Descent Method(SDM)来最小化非线性最小二乘函数(Non-linear Least Squares)。值得注意的是,SDM是一种优化方法,用它来进行人脸特征点检测主要是用在目标函数的优化求解上。SDM与其他方法不同的地方在于:传统的牛顿法每次迭代的步长是计算得到的,而SDM每次的步长是通过对样本训练得到的。

SDM

如图,(a)图表示传统的牛顿法。牛顿法的迭代公式可以写成:

xk+1=xkH1(xk)Jf(xk)

其中 H(xk) 为Hessian矩阵, Jf(xk) 为Jacobian矩阵。显然可知,牛顿法每一步的迭代步长 Δx 是计算得到的。(b)图就是本文提出的SDM方法,每次迭代的步长 Δx 是由 x 的值直接乘上 Rk 得到的。那么 Rk 是如何得到的呢? Rk 是通过对已有样本进行监督学习得到的。

下面结合人脸特征点检测的任务具体说一说SDM方法。

SDM

人脸特征点检测的任务就是给定一张脸,然后标定出这张脸上的一些特征点。

landmark

如图,左边是手工标记的人脸特征点坐标,也就是人脸特征点任务中的最优解 x ,右边是初始化时的特征点坐标,记做 x0

建模

d(

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值