【ECCV2024】优化扩散模型以进行联合轨迹预测和可控生成

d2e3232f2a0a4ef60718f1d4f665eccf.png

来源:专知
本文为论文介绍,建议阅读5分钟
为了应对这些挑战,我们引入了最优高斯扩散(OGD)和估计清洁流形(ECM)引导。

19fa047ac4af6b04311702906bb35113.png

扩散模型在自动驾驶的联合轨迹预测和可控生成方面展现出了潜力,但它们面临着推理步骤效率低下和计算需求高的挑战。为了应对这些挑战,我们引入了最优高斯扩散(OGD)和估计清洁流形(ECM)引导。OGD优化了小扩散时间T的先验分布,并从此开始逆向扩散过程。ECM直接向估计的清洁流形注入引导梯度,消除了整个网络中广泛的梯度反向传播。我们的方法简化了生成过程,使实际应用能够减少计算开销。在大规模的Argoverse 2数据集上进行的实验验证表明,我们的方法性能卓越,为自动驾驶的计算效率高、质量高的联合轨迹预测和可控生成提供了一个可行的解决方案。我们的项目网页位于

https://yixiaowang7.github.io/OptTrajDiff_Page/

关键词:扩散模型、自动驾驶、轨迹预测、可控轨迹生成。

a1a9bb17d3a95e23d94d2943732e48df.png

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

83ca81512de59afa42d121054e3dcc5a.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

### 使用扩散模型实现离线轨迹规划的方法 #### 方法概述 离线轨迹规划是指在一个预先收集的数据集上训练策略或价值函数,在测试阶段仅利用这些预训练好的组件来进行决策。对于基于扩散模型的离线轨迹规划,核心在于构建能够捕捉状态空间分布特性的生成模型。 Diffuser作为一种专门为学习轨迹优化而设计的扩散模型,通过引入噪声逐步破坏给定的状态序列直到其变得随机化,再反过来从纯噪音中重建原始数据的过程来完成这一目标[^1]。这种机制允许模型学会不同时间步之间的复杂关系,并有效地模拟可能的动作路径。 为了适应特定的任务需求,可以采用分类引导采样的方式调整生成过程中的条件约束,从而使得产生的轨迹更贴近期望的行为模式。例如,在机器人操作环境中,可以通过指定末端执行器的目标位置作为额外输入指导整个动作链的设计。 #### 应用案例分析 当面对高维连续控制问题时,如机械臂运动或是自动驾驶汽车导航,传统的基于模型的方法往往难以取得理想效果。相比之下,TAP(Trajectory Autoencoding Planner),它以VQ-VAE为基础框架并融合了变分自编码的思想,则展示了显著的优势。该方案不仅实现了高效的样本获取能力,而且能够在复杂的多模态环境下保持良好的泛化性能[^2]。 此外,随着研究进展,“探索未来智能的边界:基于扩散模型的强化学习综述”一文中提到的相关工作也进一步推动了此类技术的发展。通过对现有资源技术路线图进行全面梳理,有助于识别当前领域内最具潜力的研究方向以及潜在的应用场景[^3]。 ```python import torch from diffusers import UNet2DModel class DiffusionPlanner: def __init__(self, model_path): self.model = UNet2DModel.from_pretrained(model_path) def plan_trajectory(self, start_state, end_goal, num_steps=100): trajectory = [] current_state = start_state for step in range(num_steps): noise_level = (num_steps - step) / num_steps with torch.no_grad(): predicted_noise = self.model(current_state.unsqueeze(0), timestep=noise_level).sample denoised_state = current_state - predicted_noise.squeeze() if step % 10 == 0 or step == num_steps - 1: trajectory.append(denoised_state.clone()) current_state = denoised_state + ((end_goal - denoised_state) * min(step / num_steps, 0.1)) return trajectory ``` 此代码片段展示了一个简单的基于UNet架构的扩散模型用于离线轨迹规划的例子。这里假设已经有一个经过良好训练的权重文件可供加载。`plan_trajectory` 函数接收起始状态 `start_state` 结束目标 `end_goal` 参数,返回一系列中间过渡状态组成的列表表示完整的行动路线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值