线性代数的本质(二)

1、矩阵与线性变换

1)线性变换

首先,我们来解析线性变换这个术语,“变换”本质上是“函数”的一种花哨说法,它接收输入内容并输出对应的结果。特殊的,在线性代数层面下,我们考虑的是接收一个向量并且输出一个向量的变换。

我们可以使用运动去理解这种“向量的函数”。如果一个变换接收一个向量并输出一个向量,我们想象这个输入向量移动到输出向量的位置。

接下来,要理解整个变换,我们可以想象每一个输入变换都移动到对应的输出向量位置。因为将向量看作箭头,同时考虑所有二维向量会变得非常拥挤,所以如上篇所说,我们将每一个向量看成一个点。

用这种方法考虑所有输入向量都移动到对应输出向量位置时,我们只用看空间中所有点移动到其它点的位置。

二维空间变换的情况下,为了更好的体会整个空间形状上的改变,我们把无线网格上的所有点同时做变换,与此同时,我们也也在背景中保留原始网格,以便追踪终点和起点间的对应关系。

变换有多种多样,其中有些十分美妙,如下图所示。

我么可以想象到,任何一个变换都可以非常复杂,而线性代数限制了变换的类型,这种变换更容易理解我们把它称为线性变换。如果一个变换具有以下两个性质,我们就称它为线性变换:
1、直线在变换后仍保持为直线,不能有所弯曲。
2、原点保持固定。
总的来说,你应该把线性变换看作是“保持网格线平行且等距分布”的变换。

2)线性变换的数值描述–矩阵

那么,我们应该如何用数值去描述这些变换呢?实际上我们只需记录两个基向量变换后的位置即可完成这个任务。

举个例子,我们考虑坐标为(-1,2)的向量v,如果我们运用一些变换,并跟随这三个向量运动(i帽、j帽和v),变换后的向量也是变换后i帽和j帽的线性组合,这意味着你可以只根据变换后的i帽和j帽就可推断出变换后的v,而不用考虑变换本身。

因此,一个二维线性变换只用四个数字就可以表示–>变换后i帽的两个坐标和变换后j帽的两个坐标。我们将这些坐标包装在一个2乘2的格子中,称它为2乘2的矩阵。这个矩阵就是对变换过程最好的描述。

如果你有一个描述线性变换的2乘2矩阵,以及一个给定向量,你想了解线性变换对这个向量的作用,你只需要取出向量的坐标,将他们分别与特定列相乘,然后将结果相加即可。这与缩放基向量再相加的思想一样。注:矩阵只是一个记号!它含有描述一个线性变换的信息。

总之,线性变换是操控空间的一种手段,它保持网格线平行且等距,并且保持原点不动。令人高兴的是,这种变换仅用几个数字就可以描述,这些数字就是变换后基向量的坐标。以这些坐标为列所构成的矩阵为我们提供了一种描述线性变换的语言。这里重要的一点是:每当你看到一个矩阵时,你都可以把它解读成对空间的一种特定变换。

2、矩阵乘法与线性变换复合

1)线性变换复合

如果对一个向量先进行一次旋转变换,再进行一次剪切变换 ,如下图所示:
在这里插入图片描述
那么如果通过旋转矩阵和剪切矩阵来求得这个符合矩阵呢?为了解决这个问题,我们定义这个过程叫做矩阵的乘法

2)矩阵的乘法

在这里我们发现,矩阵乘法的变换顺序是从右往左读的(这一个常识很重要,你得明白这一点,有基本概念),进一步联系和思考发现,和复合函数的形式,如 f(g(x)),是一致的。
那么如何求解矩阵乘法呢?对线性代数有印象的同学你们现在能马上记起来那个稍显复杂的公式吗?如果有些忘记了,那么,现在,就有一个一辈子也忘不了的直观解释方法:
在这里插入图片描述
M1矩阵的第一列表示的是 i帽变换的位置,先把它拿出来,M2矩阵看成对这个变换过的i帽进行一次变换(按照同样的规则),就如上图所示。同理,针对 j帽 一样的操作过程,就可以得出这个表达式。
同理,在三维坐标系下也成立。

3、行列式

1)行列式的定义

我们注意到,有一些变换在结果上拉伸了整个网格,有一些则是压缩了,那如何度量这种压缩和拉伸呢?或者换一种更容易思考的表达,某一块面积的缩放比例是多少?
根据我们之前讲的基向量,我们只需要知道 i帽和j帽组成的面积为1的正方形面积缩放了多少就代表所有的情况。因为线性变换有一个性质:网格线保持平行且等距分布
所以,这个特殊的缩放比例,即线性变换对面积产生改变的比例,就是行列式
在这里插入图片描述
特别的,我们可以发现,如果一个矩阵的行列式为0,意味着它把这个空间降维了,并且矩阵的列线性相关。
其中,正负表达的是方向,类似于纸的翻面。从数学来说,j帽起始状态在i帽的左侧,如果经过变换,变为在右侧,就添加负号。三维情况下,右手定位为正,左手定则为负。

2)行列式的计算

在这里插入图片描述

3、逆矩阵、列空间与零空间

首先,这一节并不涉及计算的方法,相关名次有:高斯消元法 Gaussian elimination、行阶梯形 Row echelon form。这里着眼的是对抽象的概念建立一个几何直观的理解,计算的任务就交给计算机去做。

1)线性方程组

在这里插入图片描述
上图就是一个整理好的线性方程组,一般形式Ax=v ,其中x是待求向量。使用之前的几何直观来翻译个公式即,x经过A矩阵变换后,恰好落在v上,如下图:
在这里插入图片描述
既然使用了A这个矩阵变换,那么之前讲解的概念:行列式应用在这里就很有意思了。根据之前提到的,行列式直观来说就是矩阵变换操作面积的缩放比例。我们可以思考,det(A)=0意味着缩放比例为0,即降维了。很大可能找不到解,唯一的可能性,比如平面压缩成直线,这个直线恰好落在 v上才有解。这也是为什么计算行列式的值可以判断方程是否有解的几何直观。
接下来思考如何求 向量x。逆向思考,从 向量v出发,进行某一个矩阵变换,恰好得到 x。而这个反过来的矩阵变换,就称为A矩阵的逆矩阵,写成公式是:
在这里插入图片描述

2)逆矩阵

所谓逆,就是反过来的意思。根据基向量代表整个空间,已经变换过的i帽和j帽如何通过一个矩阵变换,变回
和原来的i帽和j帽这个矩阵就是逆矩阵 ,直观理解如下图:
在这里插入图片描述
逆矩阵乘原矩阵等于恒等变换,写作
AA−1=I
其中,I矩阵表示基向量,对角线元素为1,其余为0(矩阵说对角线,默认为左上方到右下方)。

3)列空间

其实这只是之前一直在提到过的概念,在线性方程组中,这么描述:所有可能得输出向量 Av构成的集合被称为A的列空间。这么说不太好理解,可以从名称“列空间”入手,矩阵的列是什么呢?我们之前已经多次强调了,就是i帽和j帽变换后的坐标。即矩阵的列表示基向量变换后的坐标(位置),变换后的向量张成的空间就是所有可能得输出向量
简单说即:列张成的空间 = 列空间,即矩阵的列所张成的空间,如下图。
在这里插入图片描述

4)秩 Rank

秩是秩序,联想为秩序的程度。
我们已经建立了一种深刻的认知:矩阵 = 变换那么变换后空间的维度,就是这个矩阵的秩。更加精确的定义是:列空间的维数

5)零空间(核)

变换后落在原点的向量的集合,称为这个矩阵(再次强调矩阵 = 变换的数字表达)的零空间或核,如果感觉没理解,可以看看下图:
在这里插入图片描述
【图1】二维压缩到一个直线(一维),有一条直线(一维)的点被压缩到原点
【图2】三维压缩到一个面(二维),有一条直线(一维)的点被压缩到原点
【图3】三维压缩到一条线(一维),有一条直线(二维)的点被压缩到原点
【注意】压缩就是变换,变换就是矩阵,其实说的就是矩阵

满秩 = 列空间 + 零空间

6)总结

1、从几何角度理解线性方程组的一个高水平概述
2、每个方程组都有一个线性变换与之联系,当逆变换存在时,你就能用这个逆变换求解方程组
3、不存在逆变换时,列空间的概念让我们清楚什么时候存在解
4、零空间的概念有助于我们理解所有可能得解的集合是什么样的

4、非方阵

1)几何意义

首先从一个特例出发,考虑3×2(3行2列)矩阵的几何意义,从列空间我们得知,第一列表示的是i帽变换后的位置(现在是一个有三个坐标的值,即三维),第二列同理是 j帽。总结来说,3×2矩阵的几何意义是将二维空间映射到三维空间上
在这里插入图片描述
此时从特例到一般化推倒,我们可以得到一个结论:n*m 的几何意义是将m维空间(输入空间)映射到n维空间(输出空间)上。注意这里的输入空间,输出空间的概念,阅读方向同样也是从右向左的(靠右的是输入,靠左的是输出)。

2)非方阵乘法

如果你已经学过线性代数的大学课程,你可能有一些影响,并不是任意两个非方阵都可以进行矩阵乘法,必须满足一些条件,例如,M1M2(非方阵)计算中,假设 M2为2×3的矩阵,那么 M1的列必须等于 M2的行,否则这个乘法是没法计算的。当我们有了变换的几何直观后,这个概念只要自己思考推倒一次,也是一辈子都忘不了的直观解释是:矩阵的行是这个变换的输出空间维数,而列是变换的输入空间维数。矩阵乘法从右向左读,第一个变换的 M2的输出向量的维度( M2的行)必须和第二个变换 M1的输入向量( M1的列)维度相等,才可以计算。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值