强化学习笔记-02多臂老虎机问题

本文是博主对《Reinforcement Learning- An introduction》的阅读笔记,不涉及内容的翻译,主要为个人的理解和思考。

1. 多臂老虎机问题

 多臂老虎机问题是指存在K个老虎机,每个老虎机的获胜金额是一个未知的概率分布且相互独立,假设我们有N次参与机会,如何选择每次参与的老虎机才能使得累积获胜金额最大?

对于这个问题,我们首先可以知道,每次选择的老虎机应该是期望获胜金额最大的机器,即:

A_t = arg max_a\ Q(a),\ Q(a) = E[R|a]

A_t表示第t次选择的老虎机,Q(a)表示老虎机a的期望获胜金额,由于实际上我们只能根据历史数据进行估计,实际的形式为:

A_t = arg max_a\ Q_t(a),\ Q_t(a) = E[R_t|a]

所以对于多臂老虎机问题最本质的问题在于对Q(a)的预估,这同强化学习中的价值函数V(s)及Q(s,a)是类似的。Q(a)的计算相对是简单的,其表示的期望可以由历史获胜金额的均值来表示。

Q_t(a) = \frac{R_1(a)+R_2(a)+... +R_{t-1}(a)}{n-1} \\ = \frac{1}{n-1}(R_{t-1}(a) + (n-2)Q_{t-1}(a)) \\ = Q_{t-1}(a) + \frac{1}{n-1}(R_{t-1}(a) - Q_{t-1}(a))

上式中的R(a)表示每次选择老虎机a时的奖励,n表示总共选择a的次数,Q_{t-1}(a)表示前一次选择老虎机a时的奖励预估。上式代表了新Q(a)是通过旧Q(a)进行更新的。

但是由于参与次数是有限的,一方面我们需对每个老虎机a进行大量的参与,才能对Q(a)进行较精确估计,另一方面为了保证整体的收益,我们需要尽可能地参与Q(a)高的老虎机。前者类似于强化学习中的explore过程,后者类似于exploit过程,如何去平衡这两者是balancing exploration and exploitation是多臂老虎机问题的重要难点,下一节我们将考虑几种方法用于解决这个问题。

关于更新权重的问题:

在很多情况下,我们会发现Q(a)的更新式子是如下形式的:

Q_t(a) = Q_{t-1}(a) + \alpha_t(a) (R_{t-1}(a) - Q_{t-1}(a))

其通过α(a)代替了1/n,同时给出了如下条件下,Q(a)的更新是收敛的:

很多情况下我们会让 α(a)设为某个固定的值α,虽然当奖励分布Q是静态的时(不会随时间变化)并不能保证完全收敛,但是在实际上多数情况下奖励分布Q都是动态的,在这种情况下设为某个固定的值α往往也是可行的。

2. Balance Exploration and Exploitation的基本优化方法

A) ε-greedy

greedy(贪心算法)一般是指每次只选择当前Q最大的,即A_t = arg max_a\ Q_t(a),而ε-greedy算法是指每次有一定较小的概率ε来平均选择其他项,即

\begin{cases} & A_t = argmax_a\ Q_t(a),\text{ if } p= 1-\varepsilon \\ & \tilde{A_t}\neq A_t, \text{ if } p=\varepsilon \end{cases}

ε-greedy算法提供了最基础的形式来进行探索,通过ε值选择可以确定exploration和exploitation的平衡点。

B) UCB(Upper-Confidence-Bound)

UCB算法在原来的Q预估的基础上添加了一个上界的预估,这个上界当参与次数少的时候会大,而当参与足够多时,上界会收缩,这种方式保证了对未知的探索

A_t=argmax_a\ [Q_t(a) + c\sqrt{\frac{In(t)}{N_t(a)}}]

上式中的t表示当前总共参与的次数,N_t(a)表示当前a的总共参与次数,c表示上界预估项的权重,通过c值选择可以确定exploration和exploitation的平衡点。

UCB这种方式包含了对Q预估的不确定性的定量估计,但当Q分布是动态变化时(即分布会随时间发生变化),会失去了探索动力,另一方面,当前动作空间特别大时,N_t(a)的计算也很困难。

C) 合理初始值Optimistic Initial Values

这种方式是给Q预估的初始值设置为一个较大值(一般情况下要远大于估计的均值)Q_0(a)=+M,这种方式能保证在刚开始的情况下,各个机器都有均衡的概率被选择到,这种方式实现上比较简单好用,当各机器的奖励分布是静态时,其可以达到同ε-greedy算法类似的收益,甚至要好。但当机器的奖励分布是动态变化时(nonstationary problems),这种方式经过了长期迭代后,会失去了探索动力,UCB也有类似的问题。

D) 梯度方法Gradient algorithms

梯度方法根据动作的preference函数H(a)来选择参与的机器,其选择方式是通过一个概率决策函数π来确定的

\pi_t(a) = Pr\{A_t = a\} = \frac{e^{H_t(a)}}{\sum^K_{b=1} e^{H_t(b)}}

所有机器在t时刻的选择概率之和为1,即

\sum^k_{b=1} \pi_t(b) = 1

其中preference函数H(a)的计算式子为下式,其中R_t表示t时刻的收益,\bar{R_t}表示累积到t时刻的平均收益。

\begin{cases} & H_{t+1}(A_t) \doteq H_{t}(A_t) + \alpha (R_t - \bar{R_t})(1-\pi_t (A_t)) \text{ if } a=A_t \\ & H_{t+1}(a) \doteq H_{t}(a) - \alpha (R_t - \bar{R_t})\pi_t (a)\text{ if } a\neq A_t \\ & H_{0}(a) = 0 \end{cases}

这种更新方式为什么被称之为梯度方法呢?实际上preference函数H(a)是为了最大化总体收益即E[R],因此我们考虑H(a)的更新方向是使得E[R]的最大的梯度方向,即:

H_{t+1}(a)=H_{t}(a) + \alpha \frac{\partial E[R_t]}{\partial H_{t}(a)}

这里的E[R]表示是当前收益的期望,q(b)表示机器b的期望收益。

E[R_t]=\sum^K_{b=1}\pi_t(b)q_*(b)

接下来,我们计算梯度:

\frac{\partial E[R_t]}{\partial H_{t}(a)}=\frac{\partial }{\partial H_{t}(a)}[\sum^K_{b=1}\pi_t(b)q_*(b)]\\ =\sum^K_{b=1}(q_*(b)-X_t)\frac{\partial \pi_t(b)}{\partial H_{t}(a)}\\ = \sum^K_{b=1}(q_*(b)-X_t)\frac{\partial }{\partial H_{t}(a)}[\frac{e^{H_t(b)}}{\sum^K_{c=1}e^{H_t(c)} }]\\ = \sum^K_{b=1}(q_*(b)-X_t)[\frac{\frac{\partial H_t(b)}{\partial H_{t}(a)}e^{H_t(b)}(\sum^K_{c=1}e^{H_t(c)})-e^{H_t(b)}e^{H_t(a)}} {(\sum^K_{c=1}e^{H_t(c)})^2 }]\\ = \sum^K_{b=1}(q_*(b)-X_t)[1|_{a=b}\pi_t(b)-\pi_t(b)\pi_t(a)]\\ =\sum^K_{b=1}(q_*(b)-X_t)(1|_{a=b}-\pi_t(a))\pi_t(b)\\ =(q_*(b)-X_t)(1|_{a=b}-\pi_t(a))

上式中的X表示一个同所选a不相关的变量,由于下式。

\sum^K_{b=1}\frac{\partial \pi_t(b)}{\partial H_{t}(a)}=0

为什么要选择引入这个变量X?首先我们考虑机器b的期望收益q(b)实际上是很难预估的,所以我们实际用R即时收益来代替(称之为随机梯度法),如果设置X=0,仍是会收敛的,但是由于R本身带有一定的随机性,为了避免更新步伐太大,所以一般设置X_t=\bar{R_t},表示过去平均的总体收益。

E) 贝叶斯方法Bayesian methods

贝叶斯方法的逻辑是假设Q(a)是某种先验分布(如高斯分布,beta分布等),然后随着参与,不断更新Q(a)参数估计。在动作选择时,采用的是类似于后验采样(称之为posterior sampling or Thompson sampling)来选择动作。其原理是每一轮根据不同动作的Q(a)分布采样生成各自Q,然后再选择Q最高的a作为本轮的动作,这种方式兼顾exploration和exploitation。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《Python学习笔记》是由皮大庆编写的一本关于Python语言学习的教材。在这本书中,作者详细介绍了Python语言的基础知识、语法规则以及常用的编程技巧。 首先,作者简要介绍了Python语言的特点和优势。他提到,Python是一种易于学习和使用的编程语言,受到了广大程序员的喜爱。Python具有简洁、清晰的语法结构,使得代码可读性极高,同时也提供了丰富的库和模块,能够快速实现各种功能。 接着,作者详细讲解了Python的基本语法。他从变量、数据类型、运算符等基础知识开始,逐步介绍了条件语句、循环控制、函数、模块等高级概念。同时,作者通过大量的示例代码和实践案例,帮助读者加深对Python编程的理解和应用。 在书中,作者还特别强调了编写规范和良好的编程习惯。他从命名规范、注释风格、代码缩进等方面指导读者如何写出清晰、可读性强的Python代码。作者认为,良好的编程习惯对于提高代码质量和提高工作效率非常重要。 此外,作者还介绍了Python的常用库和模块。他提到了一些常用的库,如Numpy、Pandas、Matplotlib等。这些库在数据处理、科学计算、可视化等领域有广泛的应用,帮助读者更好地解决实际问题。 总的来说,《Python学习笔记》是一本非常实用和全面的Python学习教材。通过学习这本书,读者可以系统地学习和掌握Python编程的基础知识和高级应用技巧,为以后的编程学习和工作打下坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值