不定期备考小tips[常微][1] #20210525


本专栏主要作个人笔记,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

常微(Strogatz书)

参考书籍:
1994年版,资源自寻

高阶扰动下的不鲁棒

扰动出螺旋

x ˙ = − y , y ˙ = x \dot x=-y,\dot y=x x˙=y,y˙=x基础上作高阶扰动。(原系统具有中心)
回忆小tips[0]当中的换极坐标套路。

  • 对于 x ˙ = − y − x 3 , y ˙ = x \dot x = -y-x^3, \dot y=x x˙=yx3,y˙=x,有
    θ ˙ = x y ˙ − y x ˙ r 2 = x 2 + y 2 + y x 3 r 2 = 1 + y x 3 r 2 , r ˙ = x x ˙ + y y ˙ r = − x 4 r \dot \theta = \frac{x\dot y - y\dot x}{r^2}=\frac{x^2+y^2 +yx^3}{r^2}=1+\frac {yx^3}{r^2},\dot r = \frac{x\dot x+y\dot y}r=-\frac{x^4}{r} θ˙=r2xy˙yx˙=r2x2+y2+yx3=1+r2yx3,r˙=rxx˙+yy˙=rx4
    定性分析,知道当 r r r小时, θ ˙ \dot \theta θ˙接近1,此时 r ˙ \dot r r˙始终为非正数,则这是吸引的螺旋。
  • 对于更复杂的 x ˙ = − y + a x 3 , y ˙ = x + a y 3 \dot x = -y+ax^3, \dot y = x+ay^3 x˙=y+ax3,y˙=x+ay3,有
    θ ˙ = 1 + O ( r 2 ) , r ˙ = a ( x 4 + y 4 ) 与 a 同 号 \dot \theta = 1 + O(r^2),\dot r = a(x^4+y^4)与a同号 θ˙=1+O(r2),r˙=a(x4+y4)a
    a = 0 a=0 a=0,则中心还是中心。若 a > 0 a>0 a>0是排斥的螺旋。若 a < 0 a<0 a<0是吸引的螺旋。

扰动出鞍点

x ˙ = x y , y ˙ = x 2 − y \dot x = xy, \dot y = x^2-y x˙=xy,y˙=x2y,则原系统线性近似后具有非孤立的平衡点 ( 0 , 0 ) (0,0) (0,0)
然而原系统的平衡点显然只有原点。
为了定性分析该平衡点,在相平面上画出 x ˙ = 0 \dot x=0 x˙=0 y ˙ = 0 \dot y=0 y˙=0的线(“零线”,nullcline)
在这里插入图片描述
方法是先画出零线,再标记好零线两侧的 x ˙ \dot x x˙ y ˙ \dot y y˙符号正负,然后定性分析。此处直观看出原点是鞍点, y y y轴是稳定流形(参见后文)。

平面上吸引但不李雅普诺夫稳定

回忆小tips[0]中的圆环上的系统。此处用极坐标刻画其延拓到平面上后的一个可能系统。
r ˙ = r ( 1 − r 2 ) , θ ˙ = 1 − c o s θ \dot r = r(1-r^2),\dot \theta = 1-cos\theta r˙=r(1r2),θ˙=1cosθ
平衡点有 ( 0 , 任 意 ) , ( 1 , 0 ) (0,任意),(1,0) (0,),(1,0)(注意 θ = 0 \theta=0 θ=0 θ = 2 π \theta=2\pi θ=2π表示同一个点)。
r ˙ \dot r r˙在0附近情况,看出 ( 0 , 任 意 ) (0,任意) (0,)是排斥的。
在这里插入图片描述
可以定性画出草图。单位圆上的点始终在单位圆上运动(因为 r = 1 r=1 r=1 r ˙ = 0 \dot r=0 r˙=0),且看出初始 θ = 0 \theta = 0 θ=0的点始终满足 θ = 0 \theta =0 θ=0。而圆外和圆内的点都向圆上聚集,同时 θ \theta θ最终都逆时针趋于 2 π 2\pi 2π
可以证明 ( 1 , 0 ) (1,0) (1,0)是吸引但不李雅普诺夫的。

  • 说明吸引可以分别解析求解考察 r r r θ \theta θ的演变,发现 r r r总是能趋于 1 1 1,而 θ \theta θ则趋于 2 π 2\pi 2π
  • 说明不李雅普诺夫稳定可以根据定义,考察在平衡点 ( 1 , 0 ) (1,0) (1,0)附近位于以原点为圆心单位圆上的其它点的运动。注意该点附近任意小邻域中,都存在单位圆上的其它点

鞍点、稳定流形、不稳定流形

基础

现在我们只需要知道光滑曲线是流形即可。
对于二维平面中鞍点,如果作线性近似,有两个特征方向。当 t → ∞ t\to \infty t时,所有轨迹都趋向于其中一个方向对应的直线(该直线上的点最终远离鞍点,故称为不稳定流形)。而当时间反演 t → − ∞ t \to -\infty t时,所有轨迹都趋向于另一条直线(该直线上的点最终靠近鞍点,故称为稳定流形)。而在线性近似之前,稳定流形和不稳定流形各自可能不是直线,但是其在鞍点处切线一定是前述直线。

线性估计例

对于 x ˙ = x + e − y ( ≈ x − ( − 1 ) − y + y 2 2 ⋯   ) , y ˙ = − y \dot x = x+e^{-y}(\approx x-(-1)-y+\frac {y^2}2\cdots), \dot y = -y x˙=x+ey(x(1)y+2y2),y˙=y,可以在唯一的平衡点(是鞍点) ( − 1 , 0 ) (-1, 0) (1,0)附近展开到线性项(其中 u , v u,v u,v x , y x,y x,y经过一个平移)
( u ˙ v ˙ ) = ( 1 − 1 0 − 1 ) ( u v ) \left(\begin{matrix}\dot u \\ \dot v\end{matrix}\right)=\left(\begin{matrix}1 & -1\\ 0 & -1\end{matrix}\right) \left(\begin{matrix}u \\ v \end{matrix}\right) (u˙v˙)=(1011)(uv)
通过求解特征方向得到正特征值 1 1 1对应的不稳定流形 x x x轴,负特征值 − 1 -1 1对应的稳定流形的切线方向是 ( 1 , 2 ) (1,2) (1,2)

高阶估计例

v ˙ = − v , u ˙ = u − v + v 2 2 + ⋯ \dot v = -v, \dot u = u-v+\frac {v^2}2+\cdots v˙=v,u˙=uv+2v2+,则 d u d v = − u v + 1 − v 2 + v 2 6 ⋯ \frac{du}{dv}=-\frac uv+1-\frac v2 +\frac{v^2}6\cdots dvdu=vu+12v+6v2
直接设稳定流形近似到二阶为 v = 2 u + A u 2 v=2u+Au^2 v=2u+Au2,代入得
d u d v = ( d v d u ) − 1 = ( 2 + 2 A u ) − 1 = − u v − 1 + 1 − v 2 + v 2 6 + ⋯ \frac{du}{dv}=(\frac{dv}{du})^{-1}=(2+2Au)^{-1}=-uv^{-1}+1-\frac v2 +\frac{v^2}6+\cdots dvdu=(dudv)1=(2+2Au)1=uv1+12v+6v2+
由此看出只需要保留到 O ( u ) O(u) O(u)
( 2 + 2 A u ) − 1 = − ( 2 + A u ) − 1 + 1 − u (2+2Au)^{-1} = -(2+Au)^{-1}+1-u (2+2Au)1=(2+Au)1+1u
1 2 ( 1 − A u ) = − 1 2 ( 1 − A u 2 ) + 1 − u , 3 A 4 = 1 , A = 4 3 \frac 12(1-Au)=-\frac 12(1-\frac {Au}2)+1-u,\frac {3A} 4=1, A=\frac 43 21(1Au)=21(12Au)+1u,43A=1,A=34

鞍点的连接(Saddle connections)

一个系统有两个鞍点,两个鞍点可能被连接(注意连接线总是从一个点指向一个点,所以对于一个点是稳定流形,对于另一个点是不稳定流形)。也有可能不能连接。
考察 x ˙ = a + x 2 − x y , y ˙ = y 2 − x 2 − 1 \dot x = a+x^2-xy,\dot y =y^2-x^2-1 x˙=a+x2xy,y˙=y2x21,若 a = 0 a=0 a=0则系统有两个鞍点 ( 0 , 1 ) , ( 0 , − 1 ) (0,1),(0,-1) (0,1),(0,1),并且显然存在一元函数 f f f,使得 x = 0 , y = f ( t ) x=0,y=f(t) x=0,y=f(t)是方程的解,则可以看出两鞍点被连接。
注:实际上此处 a ≠ 0 a\neq 0 a=0时鞍点不能连接。那么回忆小tips[0]中的“分类标准问题”,就可以认为是否“连接”是不“鲁棒”的性质!
思考:鞍点有两个流形,那有没有可能双 向 奔 赴?

保守系统

保守系统(Conservative System): x ⃗ ˙ = F ⃗ ( x ⃗ ) \dot{\vec x} = \vec F (\vec x) x ˙=F (x )是一个自治方程(或称动力系统),并且有 C 1 C^1 C1 E ( x ⃗ ) E(\vec x) E(x )多元一维(自变量多维,因变量一维)函数且非平凡)在该动力系统的任一轨线上为(与该轨线有关的)常数
非平凡:相空间上任意开集上 E E E不是常数。

例1:行星绕恒星公转

列出方程

恒星始终静止在原点(即忽略行星对恒星引力),行星坐标向量 r ⃗ ( t ) = ( x ( t ) , y ( t ) , z ( t ) ) \vec r(t)=(x(t),y(t),z(t)) r (t)=(x(t),y(t),z(t)),速度和加速度分别用 r ⃗ ˙ , r ⃗ ¨ \dot {\vec r}, \ddot{ \vec r} r ˙,r ¨表示,则
m e r ⃗ ¨ ( t ) = f ⃗ ( t ) = − G m s m e ∣ r ⃗ ( t ) ∣ 2 r ⃗ ( t ) ∣ r ⃗ ( t ) ∣ m_e \ddot{ \vec r}(t) =\vec f(t) = -G \frac{m_sm_e}{|\vec r(t)|^2} \frac{\vec r(t)}{|\vec r(t)|} mer ¨(t)=f (t)=Gr (t)2msmer (t)r (t)(注意末尾表示方向的单位向量 r ⃗ ( t ) ∣ r ⃗ ( t ) ∣ \frac{\vec r(t)}{|\vec r(t)|} r (t)r (t)
把矢量都写成标量,且用一阶导表示高阶导,得到6阶的微分方程组:
d x d t = x ˙ , d x ˙ d t = − G m s r 3 x , ⋯ ( 还 有 4 个 方 程 没 写 ) \frac{dx}{dt} = \dot x, \frac{d\dot x}{dt}=-G\frac{m_s}{r^3}x,\cdots(还有4个方程没写) dtdx=x˙,dtdx˙=Gr3msx,(4)

守恒量与首次积分、角动量守恒

守恒量说白了就是满足 d d t F ( x , y , z ) = 0 \frac d {dt} F(x,y,z)=0 dtdF(x,y,z)=0 F F F,此处可以验证形如 z y ˙ − z ˙ y z\dot y-\dot zy zy˙z˙y的三个量是守恒量(物理意义是有心运动角动量守恒)。
有了守恒,就可以设为常数。即 z y ˙ − y z ˙ = A z\dot y-y\dot z=A zy˙yz˙=A这样(另两式类似)。观察轮换对称性发现 A x + B y + C z = 0 Ax+By+Cz=0 Ax+By+Cz=0,则行星始终在一过恒星平面上运动。
(注:上面说的守恒量是“首次积分”的特例。“首次积分”简单理解就是未知数的多元函数可以解析求解。比如 x ˙ = y , y ˙ = x , f ( x , y ) = x + y \dot x = y, \dot y = x,f(x,y)=x+y x˙=y,y˙=x,f(x,y)=x+y,则 f f f可以解析求解。这就是更一般的首次积分例子)

能量守恒

不妨设前述平面为 z = 0 z=0 z=0
微分方程中常见结论: ( r 2 ) ′ = r r ′ , ( r ′ 2 ) ′ = r ′ r ′ ′ (r^2)'=rr', (r'^2)'=r'r'' (r2)=rr,(r2)=rr
拓展到内积情形: ( r ⃗ ⋅ r ⃗ ) ′ = 2 r ⃗ ′ ⋅ r ⃗ ′ ′ (\vec r \cdot \vec r)'=2\vec r' \cdot \vec r'' (r r )=2r r
因此容易验证 d d t ( 1 2 r ⃗ ′ ⋅ r ⃗ ′ − G m s ( ∣ r ⃗ ∣ 2 ) − 1 2 ) = r ⃗ ′ ⋅ r ⃗ ′ ′ − G m s 2 r ⃗ ⋅ r ⃗ ′ ( − 1 2 ) ( ∣ r ⃗ ∣ 2 ) − 3 2 = 0 \frac d{dt} (\frac 12\vec r' \cdot \vec r' - Gm_s (|\vec r|^2)^{-\frac 12})=\vec r'\cdot \vec r'' - Gm_s 2\vec r \cdot \vec r'(- \frac 12) (|\vec r|^2)^{-\frac 32}=0 dtd(21r r Gms(r 2)21)=r r Gms2r r (21)(r 2)23=0。物理意义是能量守恒。
用极坐标表示(为了避免混淆,用 ρ \rho ρ表示极坐标中到原点距离),则 ∣ r ⃗ ˙ ∣ 2 = ( d ρ d t ) 2 + ( ρ d θ d t ) 2 |\dot{\vec r}|^2=(\frac {d\rho }{dt})^2+(\rho \frac{d\theta}{dt})^2 r ˙2=(dtdρ)2+(ρdtdθ)2
计算得极坐标形式守恒律:
能 量 守 恒 ( d ρ d t ) 2 + ( ρ d θ d t ) 2 − 2 G m s ρ = E 能量守恒(\frac {d\rho }{dt})^2+(\rho \frac{d\theta}{dt})^2-2\frac{Gm_s}{\rho}=E (dtdρ)2+(ρdtdθ)22ρGms=E
角 动 量 守 恒 ρ 2 d θ d t = L 角动量守恒\rho^2\frac{d\theta}{dt} = L ρ2dtdθ=L
注:6阶方程,现在有四个守恒量。如果初始时知道这四个守恒量,再额外知道两个量,即可确定系统演化。
例如:

  • 利用四个守恒量中的两个得到运动所在平面。
  • 给出一个初值:初始时行星与恒星距离。这时根据总能量和初始势能已知,得到初始动能、初始速度已知。再根据角动量已知,则初始速度和位移夹角已知
  • 因此这时再给出初始位移或速度的方向作为初值就决定了整个系统。

系统的解和相图中的表示

由两条极坐标守恒式,计算 ρ ˙ θ ˙ \frac{\dot \rho}{\dot \theta} θ˙ρ˙以消去 t t t,不难得到 d ρ d θ \frac {d\rho}{d\theta} dθdρ仅和 ρ \rho ρ有关。由此解析求解得到
ρ ( θ ) = p 1 + e c o s ( θ − θ 0 ) \rho(\theta) = \frac p {1+ecos(\theta-\theta_0)} ρ(θ)=1+ecos(θθ0)p
倒代换 u = ρ − 1 u=\rho^{-1} u=ρ1后发现出现 u = A + B c o s ( θ − θ 0 ) u=A+Bcos(\theta-\theta_0) u=A+Bcos(θθ0)形式,这就可以写出二阶线性常系数微分方程,并可以解析求解。
画关于 u ˙ , u \dot u,u u˙,u的二维相图:
在这里插入图片描述
黑点: u u u不变, ρ \rho ρ不变,行星运动轨迹是圆。
红色:椭圆(注意不要混淆这里的圆和 x O y xOy xOy空间中的圆)。
绿色:抛物线。
天蓝色:双曲线(注意必须始终有 u > 0 u>0 u>0)。

例2:“力场”

守恒量(力与势)

x ¨ = F ( x ) = x − x 3 \ddot x = F(x)=x-x^3 x¨=F(x)=xx3
物理意义:势函数 V ( x ) = − x 2 2 + x 4 4 V(x) = -\frac{x^2}2 + \frac{x^4}4 V(x)=2x2+4x4,画出 V ( x ) V(x) V(x)图像发现物理意义是物体在“二连坑”中无摩擦运动。
注:一种记忆技巧:
x ˙ = y \dot x = y x˙=y
y ˙ = x − x 3 \dot y = x-x^3 y˙=xx3
交叉相乘: 0 = x ˙ ( x − x 3 ) − y y ˙ = d d t ( − V ( x ) − y 2 2 ) 0 = \dot x (x-x^3) - y\dot y= \frac d{dt} (-V(x)- \frac{y^2}2) 0=x˙(xx3)yy˙=dtd(V(x)2y2)
总之都能得到守恒量 V ( x ) + y 2 2 V(x)+\frac {y^2}2 V(x)+2y2
注:此技巧也可辅助找到 x ˙ = s i n y , y ˙ = x − x 3 \dot x = siny, \dot y = x-x^3 x˙=siny,y˙=xx3的守恒量。

画相图

在这里插入图片描述
原体系中有三个平衡点,其中 ( 1 , 0 ) , ( − 1 , 0 ) (1,0),(-1,0) (1,0),(1,0)中心,周围有一些闭轨; ( 0 , 0 ) (0,0) (0,0)是鞍点。
用三维图理解相图:画三维空间中曲面 z = E ( x , y ) = V ( x ) + y 2 2 z=E(x,y)=V(x)+\frac{y^2}2 z=E(x,y)=V(x)+2y2,并用 z = 常 数 z=常数 z=截取,得到闭轨。并且注意原体系中平衡点附近的曲面形状对应了平衡点性质。

保守系统平衡点的性质

  • 保守系统可能有结点吗?不可能。
    吸引的结点有吸引“盆”(basin of attraction),盆中的点为起始的轨线最终都会趋向结点。根据轨线上函数 E E E为常值,结合结点附近的 E E E连续性,则这些轨线上的点对应函数 E E E都为结点处的 E E E(这是与具体轨线无关的常值),这与定义中 E E E非平凡矛盾。
  • 同理,排斥结点,吸引或排斥螺旋也不可能。
    因此容易验证 x ˙ = x − y , y ˙ = x 2 − 4 \dot x = x-y, \dot y = x^2-4 x˙=xy,y˙=x24 x ˙ = − y + a x 3 , y ˙ = x + a y 3 ( a ≠ 0 ) \dot x = -y+ax^3, \dot y = x+ay^3(a\neq 0) x˙=y+ax3,y˙=x+ay3(a=0)都不可能是保守系统。
    注:验证 x ˙ = − y + a x 3 , y ˙ = x + a y 3 ( a ≠ 0 ) \dot x = -y+ax^3, \dot y = x+ay^3(a\neq 0) x˙=y+ax3,y˙=x+ay3(a=0)有结点,还可以使用 d d t ( x 2 + y 2 ) = a ( x 4 + y 4 ) > 0 \frac d{dt} (x^2+y^2)=a(x^4+y^4)>0 dtd(x2+y2)=a(x4+y4)>0,再根据 a a a符号考察 t → − ∞ t\to-\infty t t → + ∞ t\to+\infty t+解决(自行了解“李雅普诺夫函数”)。
  • 已知保守系统的孤立不动点是 E E E的极小值点,则它在邻域为中心,且它周围的轨道是闭轨(暂时不证)。
    (回忆刚刚例2中两个极小值点 ( 1 , 0 ) , ( − 1 , 0 ) (1,0),(-1,0) (1,0),(1,0)

例3:Dipole fixed point

很特殊的一种不动点,没有线性项,只有二次项
x ˙ = 2 x y , y ˙ = y 2 − x 2 \dot x=2xy, \dot y = y^2-x^2 x˙=2xy,y˙=y2x2
交叉相乘相减得到 − x 2 x ˙ + y 2 x ˙ − 2 x y y ˙ -x^2\dot x + y^2\dot x -2xy\dot y x2x˙+y2x˙2xyy˙,第一项只和 x x x有关,提示我们整体可以乘以任意 x α x^\alpha xα作为积分因子。实际上, α = − 1 \alpha=-1 α=1,得到 d d t ( r 2 x ) = x ˙ + 2 y y ˙ x − y 2 x ˙ x 2 = 0 \frac d{dt} (\frac{r^2} x)=\dot x + \frac{2y\dot y x-y^2\dot x}{x^2}=0 dtd(xr2)=x˙+x22yy˙xy2x˙=0
因此这是保守系统,但画出相图,发现轨线是一系列和原点相切的圆,这是否说明一切点处函数 E ( x , y ) = x 2 + y 2 x E(x,y)=\frac{x^2+y^2}x E(x,y)=xx2+y2都和原点相同,产生矛盾?
实际上,这里的问题是要明确范围。该系统是全集除去原点上的保守系统。函数 E E E在原点无定义。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值