不定期备考小tips[常微][3] #20210602


本专栏主要作个人笔记,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

保守系统例子

行星运动轨迹的修正

考虑广义相对论修正,可以得到 d 2 u d θ 2 + u = α + ϵ u 2 , u = r − 1 \frac{d^2 u}{d\theta^2} + u=\alpha + \epsilon u^2, u=r^{-1} dθ2d2u+u=α+ϵu2,u=r1,其中 ϵ \epsilon ϵ小。
u ′ = v , v ′ = α − u + ϵ u 2 u'=v,v'=\alpha-u+\epsilon u^2 u=v,v=αu+ϵu2,在 ϵ \epsilon ϵ小时系统有两个不动点,显然线性近似后分别是鞍点和中心(由二次方程的性质直接看出两个矩阵分别是 0 + − 0 \begin{matrix}0& + \\ -& 0\end{matrix} 0+0(中心)和 0 + + 0 \begin{matrix}0 & + \\ + & 0\end{matrix} 0++0(鞍点))。
实际上,该系统显然是保守系统(交叉相乘相减得到 α u − u 2 2 + ϵ u 3 3 − v 2 2 \alpha u-\frac{u^2}2+\frac{\epsilon u^3}3-\frac{v^2}2 αu2u2+3ϵu32v2守恒),从而利用保守系统性质可以说明近似后的中心在近似前也是中心。
那么该中心附近的闭轨是否关于 θ \theta θ 2 π 2\pi 2π为周期(即 u , v u,v u,v 2 π 2\pi 2π后是否回到原处)?实际上应该在 ϵ \epsilon ϵ扰动下,不精确为 2 π 2\pi 2π,这就是进动。
至于中心点本身显然对应匀速圆周运动。

进动计算

α = 1 \alpha=1 α=1,首先设 ϵ u 2 − u + 1 = ϵ ( u − t ) 2 − F ( ϵ ) ( u − t ) \epsilon u^2-u+1=\epsilon(u-t)^2-F(\epsilon)(u-t) ϵu2u+1=ϵ(ut)2F(ϵ)(ut),则 − 2 ϵ t − F ( ϵ ) = − 1 , ϵ t 2 + F ( ϵ ) t = 1 , ϵ t + F ( ϵ ) = t − 1 , − ϵ t = t − 1 − 1 -2\epsilon t-F(\epsilon)=-1,\epsilon t^2+F(\epsilon) t = 1,\epsilon t+F(\epsilon)=t^{-1},-\epsilon t=t^{-1}-1 2ϵtF(ϵ)=1,ϵt2+F(ϵ)t=1,ϵt+F(ϵ)=t1,ϵt=t11
ϵ = t − 1 − t − 2 , F ( ϵ ) = − 1 + 2 t − 1 \epsilon=t^{-1}-t^{-2},F(\epsilon)=-1+2t^{-1} ϵ=t1t2,F(ϵ)=1+2t1
t − 1 = 1 2 ± 1 4 − ϵ , F ( ϵ ) = ± 1 − 4 ϵ t^{-1}=\frac 12 \pm\sqrt{\frac 14 - \epsilon},F(\epsilon)=\pm\sqrt{1-4\epsilon} t1=21±41ϵ ,F(ϵ)=±14ϵ
从而系统等价于 u ′ = v , v ′ = ϵ u 2 − 1 − 4 ϵ u u'=v, v'=\epsilon u^2 - \sqrt{1-4\epsilon}u u=v,v=ϵu214ϵ u,可以看出与匀速圆周运动差别很小。
直观来看,一阶近似下系统变为 u ′ ′ = − 1 − 4 ϵ u , T ≈ 2 π ( 1 − ϵ ) u''=-\sqrt {1-4\epsilon} u,T\approx 2\pi(1-\epsilon) u=14ϵ u,T2π(1ϵ)
然而,如何考察 ϵ u 2 \epsilon u^2 ϵu2项产生的影响?一种简单的想法是假设 u u u绝对值有界 M ≪ 1 M\ll 1 M1,从而系统可以用下列系统 u ′ ′ = − ( 1 − 4 ϵ − ϵ M ) u , 当 u > 0 ; u ′ ′ = − ( 1 − 4 ϵ + ϵ M ) u , 当 u < 0 u''=-(\sqrt{1-4\epsilon}-\epsilon M)u,当u>0;u''=-(\sqrt{1-4\epsilon}+\epsilon M) u,当u<0 u=(14ϵ ϵM)u,u>0;u=(14ϵ +ϵM)u,u<0在上方逼近。然后类似地在下方逼近。并令 M → 0 M\to 0 M0

有心力场

一种有心力场(平方反比)中 H ( p , r ) = p 2 + A r − 2 − B r − 1 H(p,r)=p^2 +Ar^{-2} -Br^{-1} H(p,r)=p2+Ar2Br1为恒量,其中, p p p为动量, r r r为到力心距离, B B B符号决定是吸引还是排斥, A A A表示了角动量守恒。
画相图:注意此处是知道保守量画相图,这和知道 p ˙ , r ˙ \dot p,\dot r p˙,r˙画相图的方法不同。
此处首先考虑 V ( r ) = A r − 2 − B r − 1 V(r)=Ar^{-2}-Br^{-1} V(r)=Ar2Br1,画出 V V V图像,进而画出 H ( p , r ) H(p,r) H(p,r)三维图,截取等高线画出轨线。
由三维图发现对于吸引的力, B > 0 B>0 B>0,此时 E E E和0的关系决定轨线是椭圆、双曲线还是抛物线。这表示物体是否被力心“捕获”。
对于排斥的力, B < 0 B<0 B<0,则 V V V是单调函数。反设此时系统存在闭轨,由几何直观至少有一个 p p p,使得有 r 1 ≠ r 2 r_1\ne r_2 r1=r2 ( p , r 1 ) (p,r_1) (p,r1) ( p , r 2 ) (p,r_2) (p,r2)都在闭轨上,这和闭轨上 H H H相同矛盾。

单摆周期的更详细计算

椭圆积分的导出

之前计算过单摆周期,现在继续计算。 T = C ∫ 0 A d θ c o s θ − c o s A = C ′ ∫ d x s i n 2 A 2 − s i n 2 x 2 T=C\int_0^A \frac{d\theta}{\sqrt{cos\theta -cosA}}=C'\int\frac{dx}{\sqrt{sin^2 \frac A2 - sin^2 \frac x2}} T=C0AcosθcosA dθ=Csin22Asin22x dx
对于分母这种形式容易想到 s i n 2 x 2 = s i n 2 A 2 s i n 2 t sin^2 \frac x2 =sin^2 \frac A2 sin^2 t sin22x=sin22Asin2t(即 1 2 c o s x 2 d x = s i n A 2 c o s t d t \frac 12 cos \frac x2 dx=sin\frac A2 costdt 21cos2xdx=sin2Acostdt)的换元,从而原式变为 C ′ ∫ d x s i n A 2 c o s t = C ′ ′ ∫ d t c o s x 2 = C ′ ′ ′ ∫ 0 π / 2 d t 1 − m s i n 2 t C'\int \frac{dx}{sin \frac A2 cost}=C''\int\frac{dt}{cos \frac x2}=C'''\int_0^{\pi /2}\frac{dt}{\sqrt{1-msin^2 t}} Csin2Acostdx=Ccos2xdt=C0π/21msin2t dt,其中 m = s i n 2 A 2 m=sin^2 \frac A2 m=sin22A,这是椭圆积分

近似计算

直接对分母做二项式展开得到 ∫ 0 π / 2 ( 1 + 1 2 m s i n 2 t + ⋯   ) d t \int_0^{\pi/2}(1+\frac 12 msin^2 t+\cdots)dt 0π/2(1+21msin2t+)dt,容易知道 ⋯ \cdots 中的项在 A ≪ 1 A\ll 1 A1时是 O ( A 4 ) O(A^4) O(A4)的高阶小。而 ∫ A 2 8 s i n 2 t d t ∫ 1 d t = A 2 / 16 \frac{\int \frac {A^2}{8}sin^2 tdt}{\int 1dt}=A^2/16 1dt8A2sin2tdt=A2/16告诉我们单摆周期的一个近似式是 T ( A ) = T ( 0 ) ( 1 + A 2 / 16 + O ( A 4 ) ) T(A)=T(0)(1+A^2/16+O(A^4)) T(A)=T(0)(1+A2/16+O(A4))

可逆系统例子

x ˙ = y − y 3 , y ˙ = − x − y 2 \dot x=y-y^3, \dot y=-x-y^2 x˙=yy3,y˙=xy2
先画零线,平衡点,相图中各区域运动方向等。
由于 t ′ = − t , y ′ = − y t'=-t,y'=-y t=t,y=y时体系不变,所以这是可逆系统,原点在近似后是中心,近似前也是中心。
另外两个平衡点是鞍点,分别是上下两条红线与蓝色抛物线的交点。
在这里插入图片描述
考察下方鞍点的不稳定流形,容易论证往左上运动的部分能在有限时间内与 x x x轴负半轴相交,再根据前述 t ′ = − t , y ′ = − y t'=-t,y'=-y t=t,y=y对称性,下方鞍点的不稳定流形和上方鞍点的稳定流形重合,成为异宿轨。

一些补充说明

保守系统中的中心

保守系统中孤立不动点是函数极小值点则是中心,如果不孤立,则 x ˙ = x y , y ˙ = − x 2 \dot x=xy,\dot y=-x^2 x˙=xy,y˙=x2是一个反例。

  • 通过交叉相乘相减再配上积分因子 x − 1 x^{-1} x1找到守恒量 E = x 2 + y 2 E=x^2+y^2 E=x2+y2
  • 原点显然是不孤立的平衡点。
  • 原点周围没有闭轨显然,因为 y ˙ \dot y y˙恒非正。

对中心作高阶扰动

线性近似后的中心在近似前的所有可能情况是能被完全分类的。若不存在螺旋线,可以说明线性近似前是中心。这个事实在上一期残留未证。

中心、焦点和中心焦点

在中文文献中,我之前所用螺旋(spiral)一词一般也称为焦点。中心焦点指在平衡点外围有一系列闭轨缩小趋于平衡点,且两闭轨间有螺旋线环绕。

分类

不妨原点附近在近似后满足 x ˙ = y , y ˙ = − x \dot x = y,\dot y=-x x˙=y,y˙=x,则容易看出 θ ˙ = x ˙ y − y ˙ x r 2 = 1 + o ( 1 ) \dot \theta = \frac{\dot x y-\dot y x}{r^2}=1+o(1) θ˙=r2x˙yy˙x=1+o(1),即轨线始终绕原点旋转。考察 r = r ( 0 ) r=r(0) r=r(0)转了一圈之后的 r ′ = r ( 2 π ) r'=r(2\pi) r=r(2π),如果 r ′ = r r'=r r=r,就对应一条闭轨,否则这一圈一定是向内或向外的螺旋线。根据轨线不能相交,直观看出之后该螺旋线始终只能向内或向外。不妨假设向内(否则考察时间反转),从而 { r ( 2 π k ) } \{r(2\pi k)\} {r(2πk)}关于 k k k单调有界必有极限。

  1. 极限是0:任取一点,由夹逼原理直观看出,最终一定会稳定到原点,即平衡点是焦点(根据有没有做时间反转,确定是吸引或排斥的焦点)
  2. 极限非0:待补全

排斥不动点的定义

排斥和吸引不动点的定义是对称的,只是时间轴方向不同。排斥不动点做时间反演是吸引不动点,反之亦然。
排斥不动点的小邻域内,“排斥到一定距离”所需的时间显然和初始点有关,这时间显然可能是无界的,例如 x ˙ = x , y ˙ = y \dot x=x,\dot y=y x˙=x,y˙=y。不要误以为排斥需要在有限时间内“一致”排斥掉。

极限环

举例

捕食-被捕食模型

x ˙ = x ( λ − σ y ) , y ˙ = y ( − μ + δ x ) \dot x = x(\lambda -\sigma y), \dot y=y(-\mu+\delta x) x˙=x(λσy),y˙=y(μ+δx),各个字母都表示正数。令所有希腊字母参数为1.
根据 x x x y y y是正数,直接考察 ( l n x ) ′ , ( l n y ) ′ (lnx)',(lny)' (lnx),(lny)的表达式,并交叉相乘相减得到守恒量,容易论证该保守系统存在中心和中心附近的闭轨。
中心表示两物种数量保持稳定,闭轨表示循环地波动。
模型的缺点:系统中闭轨有一族,并没有稳定的”极限环“。系统不”鲁棒“,容易被”扰动“成螺旋线(关于“鲁棒”请参考之后部分)。

人造例子

r ˙ = r ( 1 − r ) , θ ˙ = 1 \dot r = r(1-r), \dot\theta = 1 r˙=r(1r),θ˙=1,模型有唯一稳定的闭轨(周期解) r r r恒等于1.偏离该闭轨的点会回到闭轨处。

Van Der Pol Oscillator

x ˙ = y , y ˙ = − μ ( x 2 − 1 ) y − x \dot x = y, \dot y = -\mu(x^2-1)y-x x˙=y,y˙=μ(x21)yx μ = 0 \mu=0 μ=0就是圆周运动,而 μ > 0 \mu>0 μ>0时,当 x x x绝对值小时 − μ ( x 2 − 1 ) > 0 -\mu(x^2-1)>0 μ(x21)>0,即 y y y被”正反馈“。当 x x x绝对值大时 y y y被”负反馈“。这样的反馈让系统不会像一般的阻尼振动一样停下。
画相图:画零线 y = 0 y=0 y=0 y = − x μ ( x 2 − 1 ) y=-\frac{x}{\mu (x^2-1)} y=μ(x21)x,找唯一的平衡点(原点)的线性近似,发现矩阵行列式正,迹正,所以原点是两向排斥结点。
小技巧:除了上面常规操作,还可以再考虑一些好算的点比如 x = 0 x=0 x=0处、 x = ± 1 x=\pm1 x=±1处等,进一步帮助画图。
用电脑模拟发现看起来系统有一个环,无论外面还是里面的点都趋向于这个环。

定义

极限环:系统 x ⃗ ˙ = F ⃗ ( x ⃗ ) \dot {\vec x} = {\vec F(\vec x)} x ˙=F (x )中孤立的闭轨。

  • 稳定:里面的点向外趋向于闭轨,外面的点向内趋向于闭轨。
  • 不稳定:相反。
  • 半稳定:“一边吸引一边排斥”。
    现实意义:系统具有内禀的周期,在扰动下不变。
    线性系统不可能出现孤立闭轨,因为系统具有位似下的不变(自相似)性,极限环位似还是极限环。
    极限环暗示了非线性

不存在的判据

  • 梯度场 x ⃗ ˙ = − ∇ V ( x ⃗ ) \dot {\vec x } = -\nabla V(\vec x) x ˙=V(x )无旋度,没有闭轨。(如果有闭轨,积分一圈 V ( x f i n a l ) − V ( x i n i t ) = ∫ V ˙ d t = x ⃗ ˙ ⋅ ∇ V = − ∣ ∣ ∇ V ∣ ∣ 2 V(x_{final})-V(x_{init})=\int \dot V dt =\dot {\vec x}\cdot \nabla V= -||\nabla V||^2 V(xfinal)V(xinit)=V˙dt=x ˙V=V2就矛盾了)
    注意这里我们不妨认为过程中不经过任何平衡点,那么 ∇ V ≠ 0 \nabla V\ne 0 V=0
  • 考察以上证明过程,发现判据可以弱化为有一函数 V V V使得 x ⃗ ˙ ⋅ ∇ V \dot{\vec x}\cdot \nabla V x ˙V在非平衡点处恒为正或负,在平衡点处为0。物理意义是能量严格单调下降,所以总回不到原来的能量较高的状态。
    注:在非平衡点处始终为正实数,平衡点处为0的函数可以称为李雅普诺夫函数。若一个李雅普诺夫函数沿解 x ⃗ ( t ) \vec x(t) x (t)单调( x ⃗ ˙ ⋅ ∇ V \dot{\vec x}\cdot \nabla V x ˙V在非平衡点处恒为正或负),可说明无闭轨。然而这里的正实数,0等限制其实并不本质,其实只需要单调性就够了。

存在的判据

理论依据

x ⃗ ˙ = F ⃗ ( x ⃗ ) \dot {\vec x}=\vec F(\vec x) x ˙=F (x )是在包含 A A A的一个开集 B B B上的 C 1 C^1 C1向量场,其中 R 2 \mathbb{R}^2 R2上有界闭集 A A A不含不动点
此时,完全位于 A A A内的解曲线或者是闭轨,或者趋于一条闭轨。特别地, A A A中至少有一条闭轨。
(证明需要用到拓扑,此处不证)
思考:为什么不能含不动点?
注:有时单连通区域中有不动点,可以考虑一些环形区域使得 A A A中无不动点。

极坐标中的示例

构造 A A A(“陷阱区域”)即可。比如对于 r ˙ = r ( 1 − r 2 ) + μ r c o s θ , θ ˙ = 1 \dot r=r(1-r^2)+\mu rcos\theta, \dot \theta = 1 r˙=r(1r2)+μrcosθ,θ˙=1,构造环形区域使得内圈 r r r增,外圈 r r r减即可。所以只需要 r m a x ( 1 − r m a x 2 ) + μ r m a x < 0 r_{max}(1-r_{max}^2)+\mu r_{max}<0 rmax(1rmax2)+μrmax<0这样即可。注意为了保证开集,你可以取 r m a x = 1.001 1 + μ r_{max}=1.001\sqrt{1+\mu} rmax=1.0011+μ 但不能直接取 1 + μ \sqrt{1+\mu} 1+μ

直角坐标中的示例

化学振荡。 x ˙ = − x + a y + x 2 y , y ˙ = b − a y − x 2 y \dot x=-x+ay+x^2 y,\dot y=b-ay-x^2 y x˙=x+ay+x2y,y˙=bayx2y
看到二维系统直接按老套路,画零线 y = x a + x 2 , y = b a + x 2 y=\frac{x}{a+x^2},y=\frac{b}{a+x^2} y=a+x2x,y=a+x2b,找平衡点 ( b , b a + b 2 ) (b,\frac{b}{a+b^2}) (b,a+b2b),判断流场方向,发现形状像“螺线”或“中心”。

  1. 找外圈。直角坐标找外圈,用直线比较方便。 y = 0 y=0 y=0代入,发现向上( y ˙ > 0 \dot y>0 y˙>0 x = 0 x=0 x=0代入,发现向右; y = b a y=\frac ba y=ab代入,发现向下。
    最后一条线可以考虑使得 − x + b + b x 2 / a < 0 -x+b+bx^2/a<0 x+b+bx2/a<0 x x x,但上式未必有解。实际上这里有一定技巧性,应当观察两式发现 d d t ( x + y ) = − x + b \frac d{dt} (x+y)=-x+b dtd(x+y)=x+b,于是在直线 x + y = b + b / a + 1 x+y=b+b/a+1 x+y=b+b/a+1处合要求。
  2. 找内圈。在适当的参数下,上述外圈范围内的唯一平衡点 ( b , b a + b 2 ) (b,\frac{b}{a+b^2}) (b,a+b2b)是线性近似后排斥的,则线性近似后,在该点附近很容易取出“内圈”。足够小的内圈在线性近似前也一定是合题意的“内圈”

三维情况下存在性

主要的想法:庞加莱映射:考虑一个“截面”,从截面上一点出发的轨线下一次与“截面”相交,从出发点到下一个交点的映射就是庞加莱映射。映射的不动点对应闭轨。这样把三维问题变成了二维映射的不动点问题。

稳定性、鲁棒性与分岔

稳定性描述练习

  • A: Attracting
  • GA: Globally attracting
  • R: Repelling
  • LS: Liapunov stable
  • AS: Asymptotic stable
  • NS: Neutrally stable
  • U: Unstable
    在这里插入图片描述
  1. 吸引的两向结点:A,LS,AS
  2. 鞍点:U
  3. 吸引的焦点:A,LS,AS
  4. 排斥的退化结点:R,U
  5. 中心:LS,NS
  6. 星形结点:A,LS,AS

“稳定性”与“鲁棒性”

不动点(极限环)的稳定性

核心观念:初值小扰动,稍微偏离不动点或极限环,“结果”变化是否大?(下面的说明有助于理解结果的含义)
区分稳定性与解对初值的连续依赖性:连续依赖性在有界闭区间上考察:初值偏离一点,解在 t ∈ [ a , b ] t\in [a,b] t[a,b]范围内变化小。当 [ a , b ] [a,b] [a,b]区间不同,对于同样的 ϵ \epsilon ϵ,所需要初值的小范围 δ \delta δ也不同;当 [ a , b ] [a,b] [a,b]趋于无穷区间时,可能无法找到一致的 δ > 0 \delta>0 δ>0!(类比内闭一致收敛和一致收敛的区别)
稳定性所需“结果”的意思是考察 t → ∞ t\to \infty t时的行为。所以不稳定时可能也有连续依赖性。

鲁棒性

核心是高阶扰动改变”相图的形状“,参考之前的笔记
与鲁棒性有关的示例命题(但考察的不是我们严格定义的鲁棒性,而是某种更强的性质。因为马上会提到焦点和结点轨道拓扑等价):
对于线性近似后特征值非0的奇点(初等奇点),如果它近似后是焦点,则近似前也是焦点,且稳定性相同。
思考:如何定义”焦点“?直观上,具有相同”定性结构“。严格地,可以考察相图间”良好“的双射。
开始对鲁棒作严格定义。

  1. 什么叫对结构的小扰动?
    x ˙ = P ( x , y ) , y ˙ = Q ( x , y ) \dot x=P(x,y),\dot y=Q(x,y) x˙=P(x,y),y˙=Q(x,y) x ˙ = R ( x , y ) , y ˙ = S ( x , y ) \dot x = R(x,y), \dot y = S(x,y) x˙=R(x,y),y˙=S(x,y)
    ∣ P − R ∣ + ∣ Q − S ∣ + ∣ ∂ x P − ∂ x R ∣ + ∣ ∂ y P − ∂ y R ∣ + ∣ ∂ x Q − ∂ x S ∣ + ∣ ∂ y Q − ∂ y S ∣ < ϵ |P-R|+|Q-S|+|\partial_x P-\partial_x R|+|\partial_y P-\partial_y R|+|\partial_x Q-\partial_x S|+|\partial_y Q-\partial_y S|<\epsilon PR+QS+xPxR+yPyR+xQxS+yQyS<ϵ
    ϵ − \epsilon- ϵ接近。
  2. 什么叫保持结构?(轨道拓扑等价
    两个系统,相图在特定区域空间中有同胚(双向连续的双射),保持轨线和其方向。
  3. ∃ ϵ > 0 \exists \epsilon>0 ϵ>0,某系统的所有 ϵ − \epsilon- ϵ接近的系统都和它轨道拓扑等价,称该系统结构稳定(鲁棒)
    注:这样严格定义的鲁棒和直观理解有不同,比如焦点和结点其实是轨道拓扑等价的,所以焦点如果被扰动成结点,按照严格定义是鲁棒的。焦点扰动后仍是焦点,实际上考察的是比鲁棒性更强的某种性质。

鲁棒性与分岔

分岔:一个系统 x ⃗ ˙ = F ⃗ ( x ⃗ ; μ ) \dot{\vec x} = \vec F(\vec x;\mu) x ˙=F (x ;μ)在参数 μ \mu μ(暂时考虑一维)可变时,在 μ = μ 0 \mu=\mu_0 μ=μ0附近相图不是轨道拓扑等价的。也可以说是 μ = μ 0 \mu=\mu_0 μ=μ0附近系统对参数 μ \mu μ扰动不是鲁棒的!

二维相图中分岔举例

鞍-结点分岔

本篇前面图中,可以发现两向结点和鞍点的图像很容易拼到一起,如 x ˙ = x 2 − α , y ˙ = − y \dot x =x^2-\alpha, \dot y=-y x˙=x2α,y˙=y,参数 α = 1 \alpha=1 α=1
当参数下降到0时,出现鞍-结点分岔。(这称为鞍-结点分岔的prototypical形式)
易错点:对于 x ˙ = x 2 , y ˙ = y \dot x=x^2,\dot y=y x˙=x2,y˙=y的相图,如果没有画出 x ˙ = 0 \dot x=0 x˙=0的零线,就容易画错 y y y轴上的情况。
另一个例子: x ˙ = − a x + y , y ˙ = x 2 1 + x 2 − b y \dot x=-ax+y,\dot y=\frac{x^2}{1+x^2}-by x˙=ax+y,y˙=1+x2x2by(这个例子有实际意义)
在这里插入图片描述
画出零线,直观看出有鞍点A和结点B。
(注意,B处四条零线处运动方向指向B,B是结点;A处四条零线处运动方向远离A,A却不是结点而是鞍点。说明不但要画出零线运动方向,还要画出各个区域的运动方向,才能减少错误)
转动直线,可能产生鞍-结点分岔。
直观看到鞍点A的稳定流形位于A的左上和右下,是原点和B的吸引盆(basin of attraction)的分界线。体系在初值不同时,处于不同吸引盆,最后分别可能稳定到原点或B点。

Hopf分岔

想象一个稳定不动点随着参数变化,特征值发生变化,从而“失稳”。
例如两个特征值都非实数,实部从负变正,焦点从稳定变不稳定,但周围出现小振幅稳定极限环。(supercritical Hopf bifurcation
回忆一维的supercritical bifurcation,也是有一个平衡点从稳定变不稳定,但周围出现两个对称的稳定平衡点。
小练习:类比给出subcritical Hopf分岔的定义,并说明这为什么会产生灾难性后果。
一个例子: r ˙ = μ r ± r 3 , θ ˙ = ω \dot r=\mu r\pm r^3, \dot \theta = \omega r˙=μr±r3,θ˙=ω,非常容易看出极限环何时产生。且负号对应超临界,正号对应亚临界。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值