数理逻辑学习笔记[2] #20210708


命题逻辑:语法

公理间的关系

  1. Q:
    (L1) A → ( B → A ) \mathscr A\to(\mathscr B \to \mathscr A) A(BA)
    (L2) ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) (\mathscr A \to(\mathscr B \to\mathscr C))\to((\mathscr A \to\mathscr B)\to(\mathscr A \to \mathscr C)) (A(BC))((AB)(AC))
    (L3) ( ∼ A → ∼ B ) → ( B → A ) (\sim \mathscr A \to \sim \mathscr B)\to(\mathscr B\to\mathscr A) (AB)(BA)
    (L4) ( ∼ A → ∼ B ) → ( ( ∼ A → B ) → A ) (\sim \mathscr A\to\sim\mathscr B)\to((\sim \mathscr A \to \mathscr B)\to\mathscr A) (AB)((AB)A)
    我们想证明(L1)(L2)(L3)构成的公理系统和(L1)(L2)(L4)组成的公理系统等价。(注:前者称为Łukasiewicz’s Third axiom system. 后者称为Mendelson’s axiom system.)
    由(L1)(L2)(L3)证明(L4). 由演绎定理我们知道只需证明已知()时能推出 A \mathscr A A,而这只需()。
    A:
    L1,L2,L3, ∼ A → ∼ B \sim \mathscr A \to \sim\mathscr B AB, ∼ A → B \sim \mathscr A \to \mathscr B AB
    已知以上条件时,显然 ∼ A ⊢ ∼ B \sim \mathscr A\vdash \sim \mathscr B AB ∼ A ⊢ B \sim \mathscr A \vdash \mathscr B AB. 再回忆:已知L1,L2,L3时有 B , ∼ B ⊢ A \mathscr B,\sim \mathscr B\vdash \mathscr A B,BA,就立刻知道已知L1,L2,L3, ∼ A → ∼ B \sim \mathscr A \to \sim\mathscr B AB, ∼ A → B , ∼ A \sim \mathscr A \to \mathscr B,\sim \mathscr A AB,A时可推出 A \mathscr A A. 最后回忆 ∼ A → A ⊢ A \sim \mathscr A\to \mathscr A\vdash \mathscr A AAA即可。
  2. Q: 接上,如何证明另一方向?
    A: 只需要证明已知L1,L2,L4, ∼ A → ∼ B , B \sim \mathscr A\to\sim \mathscr B,\mathscr B AB,B时能推出 A \mathscr A A. 而这只需注意 B → ( ∼ A → B ) \mathscr B\to(\sim\mathscr A\to\mathscr B) B(AB)即可。
  3. Q: 为了证明公理(模式)L1,L2,L3每一条都是独立的,我们的思路是构造某种性质,使得一切L2,L3通过替换得到的公式都(),且若 A , A → B \mathscr A,\mathscr A\to \mathscr B A,AB都具有该性质,则()。但()不具有该性质。这就可以说明通过公理模式()和推理规则()一定无法得到L1.
    A: 具有该性质, B \mathscr B B具有该性质,L1替换的公式,L2,L3,MP.
  4. Q: 接上, ∼ \sim 作为一元运算符,对于二值逻辑可能有()种具体的含义。 → \to 作为二元运算符,对于二值逻辑可能有()种具体的含义。如果针对每个公式指派真值0或1,且之前2.中所述“某种性质”指真值为1,那么在二值逻辑的框架内是否可能为 ∼ , → \sim,\to ,指定某种具体的含义(即某个具体的真值表或布尔函数)用2.的方法作出L1独立性的证明?为什么?
    A: 4,16.
    回忆:形式系统中的运算符的含义是未事先指定的。我们可以给 ∼ , → \sim,\to ,指定任何满足公理模式和推理规则的真值表。
    以下用等号表达真值表的取值。例如 ∼ 1 = a \sim 1=a 1=a表示真值表中对1做 ∼ \sim 运算得到 a a a a a a是0或1. 我们希望L2,L3替换的公式都为1,且MP规则能保持1. 但是L1替换的公式不一定为1.
    ∼ 1 = a , ∼ 0 = b , 1 → 1 = c , 1 → 0 = d , 0 → 1 = e , 0 → 0 = f \sim 1=a,\sim 0=b,1\to1=c,1\to0=d,0\to1=e,0\to0=f 1=a,0=b,11=c,10=d,01=e,00=f,则首先 d = 0 d=0 d=0,否则当 A \mathscr A A A → B \mathscr A\to \mathscr B AB都为1时,不能推出 B \mathscr B B为1.
    此时若 c = 0 c=0 c=0,则对任意指派了1的公式 A \mathscr A A,有 A → B \mathscr A\to\mathscr B AB为0. 所以为了L3成立,L3的前件必须恒为0,则必须有对任意 A , B \mathscr A,\mathscr B A,B的指派都有 A → B \mathscr A\to\mathscr B AB为0,这又和L3成立矛盾了。 c = 1 c=1 c=1.
    注意c,d,e,f不全相等(有0也有1),故若 a = b a=b a=b,则L3相当于 a → 0 a\to 0 a0 a → 1 a\to 1 a1都为1,这说明 a = b = 0 , e = f = 1 a=b=0,e=f=1 a=b=0,e=f=1,这时L1恒成立,故这样的真值表不能用来作独立性证明。 a ≠ b a\neq b a=
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值