【数理逻辑复习】

各种符号和性质

第二章 命题逻辑

⊢ A \vdash A A \qquad A A A为可证的
Γ ⊢ A \Gamma\vdash A ΓA \quad A A A Γ \Gamma Γ可证
T h ( F S ) = { A ∈ F o r m u l a ∣ ⊢ A } Th(FS)=\left \{A\in Formula|\vdash A \right\} Th(FS)={AFormulaA} \quad F S FS FS的理论是由所有可证的 A A A组成
A ⊃ B A\supset B AB \qquad A A A蕴含 B B B
A ≡ B A\equiv B AB \qquad A A A当且仅当 B B B
S A 1 , A 2 , … , A n P 1 , P 2 , … , P n = θ S^{P_1,P_2,\dots, P_n}_{A_1,A_2,\dots, A_n}=\theta SA1,A2,,AnP1,P2,,Pn=θ \quad 代入
φ ( A ) \varphi(A) φ(A) \qquad 指派

⊨ φ Γ \models_{\varphi}\Gamma φΓ \qquad 表示任意 A ∈ Γ A\in \Gamma AΓ, 指派 φ ( A ) = t \varphi(A)=t φ(A)=t
⊨ A \models A A \qquad 永真式\重言式
Γ ⊨ A \Gamma \models A ΓA \quad 每个满足 Γ \Gamma Γ的指派均满足 A A A

可满足的: 如有指派满足 Γ \Gamma Γ, 则称 Γ \Gamma Γ 为可满足的。

★可靠性定理:若 Γ ⊢ A \Gamma\vdash A ΓA,则 Γ ⊨ A \Gamma \models A ΓA。 理解:从 Γ \Gamma Γ 出发能够证明 A A A,则所有满足 Γ \Gamma Γ 的指派都能满足 A A A

W F F P WFF_P WFFP P P P的公式集, Γ ⊆ W F F q \Gamma\subseteq WFF_q ΓWFFq T h ( P ) Th(P) Th(P) P的定理
绝对协调:若 T h ( P ) ≠ W F F P Th(P)\ne WFF_P Th(P)=WFFP ,有 P P P的公式( W F F P WFF_P WFFP)不是 P P P的定理 T h ( P ) Th(P) Th(P)
否定协调: 若 A ∈ W F F P A\in WFF_P AWFFP, 则 A ∉ T h ( P ) A\notin Th(P) A/Th(P) ∼ A ∉ T h ( P ) \sim A\notin Th(P) A/Th(P), 意思是 A A A P P P的公式,则 A A A ∼ A \sim A A至少有一个不在 P P P的定理里,不可能两个同时都在 P P P的定理里。
P \mathscr{P} P协调性定理: P \mathscr{P} P关于否定是协调的, P \mathscr{P} P为绝对协调的。因为 A A A ∼ A \sim A A至少有一个不在 P P P的定理里,否定协调成立时绝对协调必成立。

★完全性:设 Γ \Gamma Γ为公式集,若任意公式 A A A都有: A ∈ Γ A\in \Gamma AΓ 或者 ∼ A ∈ Γ \sim A\in \Gamma AΓ则称 Γ \Gamma Γ 是完全的。

★极大协调的: Γ \Gamma Γ 既是完全的,又是协调的。这两个性质确保了 A ∈ Γ A\in \Gamma AΓ 或者 ∼ A ∈ Γ \sim A\in \Gamma AΓ当且仅当其中一个成立。完全性保证了所有公式都在范围内,协调性保证了指派取值不会自相矛盾。此外,极大协调集必为可满足集,因此在极大协调集中一定能找到一个指派满足 Γ \Gamma Γ

★完全性定理:若 Γ ⊨ A \Gamma\models A ΓA,则 Γ ⊢ A \Gamma \vdash A ΓA。 理解:若所有满足 Γ \Gamma Γ 的指派都能满足 A A A, 则存在从 Γ \Gamma Γ 出发的证明能够证明 A A A

★紧致性定理:
语法紧致性:公式集 Γ \Gamma Γ 是协调的当且仅当其每个有穷子集是协调的。(考虑矛盾)
语义紧致性:公式集 Γ \Gamma Γ 是可满足的当且仅当其每个有穷子集是满足的。(考虑真值)

★公理/规则的独立性:
称形式系统 F S FS FS 中某条公理或规则是独立的,如果将其在原系统中删除后得到新系统 F S ′ FS^{\prime} FS,则 T h ( F S ′ ) ⊈ T h ( F S ) Th(FS^{\prime}) \nsubseteq Th(FS) Th(FS)Th(FS)

▲消解算法:
定义:文字(命题变元及否定)、短句(文字析取)、合取范式(短句合取)、互补文字(否定)、空短句(零个文字析取,永假,不可满足)
集合表示: ∨ \vee ∧ \wedge
( p ∨ ∼ q ∨ r ) ∧ ( ∼ r ∨ q ) (p\vee\sim q\vee r)\wedge (\sim r \vee q) (pqr)(rq) 可以用 { { p , ∼ q , r } , { ∼ r , q } } \left \{ \left \{ p, \sim q, r\right\}, \left \{ \sim r, q \right \} \right\} {{p,q,r},{r,q}}
DPLL-消解方法规则:
重言式:删除互补文字
单文字:删除单文字
纯文字:删除纯文字
分裂规则: Γ ′ \Gamma^{\prime} Γ Γ ′ ′ \Gamma^{\prime\prime} Γ′′
示例:
在这里插入图片描述

第三章 一阶逻辑

个体/函数/命题/谓词 [常元/变元]
项的可代入:项t对公式A中的个体变元x可带入(是自由的),如果对t中的每个变元y,变元x在 ∀ y / ∃ y . \forall y/\exists y. y/∃y.辖域内无自由出现。
若A中不含自由出现的x,则任何项对于A中的x都是自由的。

证明方法:

  • 无前提依赖:仅用公理及应用规则得到的公式证明
  • 带前提依赖:可以用公设集中的公式证明 [ α β 规则,有穷无穷 \alpha\beta规则,有穷无穷 αβ规则,有穷无穷]
    A N M = α 1 N α 2 ⋯ α n N α n + 1 A^{M}_N=\alpha_1 N\alpha_2 \cdots\alpha_nN\alpha_{n+1} ANM=α1Nα2αnNαn+1, 称 A N M A^{M}_N ANM为用N替换M在A中的所有指定出现的结果。

A ( C , x , y ) = A ∀ y S y x C ∀ x C A(C,x,y)=A^{\forall xC}_{\forall y S^x_yC} A(C,x,y)=AySyxCxC
α β \alpha\beta αβ条件:若 y y y不是 C C C的自由变元且 y y y C C C中的 x x x为自由的,则称 C , x , 和 y C,x,和y C,x,y满足 α β \alpha\beta αβ条件。
无前提依赖证明中, α β \alpha\beta αβ规则是一条派生规则。
语义: f [ s / t ] ( x ) = { t 若 x = s f ( x ) 否则 f[s/t](x)=\left\{\begin{matrix} t& 若x=s\\ f(x)&否则 \end{matrix}\right. f[s/t](x)={tf(x)x=s否则
模型:对每个 A ∈ Γ 都有 ⊨ I A\in\Gamma 都有\models_{\mathscr{I}} AΓ都有I,则称 I \mathscr{I} I Γ \Gamma Γ的一个模型。
设A是 F \mathscr{F} F中的句子,则A的前束范式必然是唯一的(×)。

第四章 等词系统

F ≈ \mathscr{F}^{\approx } F 不能表达“有限集”的概念,即不存在公式集 Γ \Gamma Γ 使得 I = < D , I 0 > \mathscr{I}=<\mathscr{D,\mathscr{I}_0}> I=<D,I0> Γ \Gamma Γ 的模型当且仅当 # D < ∞ \#\mathscr{D}<\infty #D<.

无限集不能够用有限多个公式刻画。

F ≈ \mathscr{F}^{\approx } F系统是 F \mathscr{F} F的保守扩张。

第五章 证明与反驳

半可判定的:如果存在一个判定过程,满足:若输入属于该问题,它一定停机回答“是”。
可判定的:如果存在一个关于该问题的判定算法。

例题:一阶逻辑公式的可满足性是半可判定的。(×)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值