YOLOv10改进 | 注意力篇 | YOLOv10引入FocalModulation注意力机制

1. FocalModulation介绍

1.1  摘要:我们提出焦点调制网络(简称 FocalNets),其中自注意力(SA)完全被焦点调制模块取代,用于建模视觉中的令牌交互。 焦点调制包含三个部分:(i) 焦点上下文化,使用一堆深度方向的卷积层实现,对从小范围到长范围的视觉上下文进行编码,(ii) 门控聚合,有选择地将上下文收集到每个查询标记的调制器中, (iii)逐元素仿射变换以将调制器注入到查询中。 大量实验表明,FocalNet 表现出非凡的可解释性(图 1),并且在图像分类、对象检测和分割任务上以相似的计算成本优于 SoTA SA 同类产品(例如 Swin 和 Focal Transformers)。 具体来说,具有微小尺寸和基本尺寸的 FocalNet 在 ImageNet-1K 上可以达到 82.3% 和 83.9% 的 top-1 精度。 在 ImageNet-22K 上以 2242 分辨率进行预训练后,在以 2242 和 3842 分辨率进行微调时分别获得 86.5% 和 87.3% 的 top-1 准确率。 对于使用 Mask R-CNN [29] 进行的目标检测,使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值