YOLOv11改进 | 注意力篇 | YOLOv11引入LSK注意力机制

1. LSK介绍

1.1  摘要: 最近关于遥感目标检测的研究主要集中在改进定向边界框的表示上,但忽略了遥感场景中呈现的独特先验知识。 这种先验知识可能很有用,因为在没有参考足够远距离上下文的情况下,可能会错误地检测微小的遥感物体,并且不同类型物体所需的远距离上下文可能会有所不同。 在本文中,我们考虑到这些先验并提出了大型选择性核网络(LSKNet)。 LSKNet可以动态调整其大的空间感受野,以更好地模拟遥感场景中各种物体的测距上下文。 据我们所知,这是首次在遥感目标检测领域探索大型选择性核机制。 没有花里胡哨的东西,LSKNet 在标准基准上设置了新的最先进的分数,即 HRSC2016 (98.46% mAP)、DOTA-v1.0 (81.85% mAP) 和 FAIR1M-v1.0 (47.87% mAP) 。 基于类似的技术,我们在2022年大湾区国际算法大赛中获得第二名。

官方论文地址:https://arxiv.org/pdf/2303.09030<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值