论文阅读笔记:Low-rank Linear Cold-Start Recommendation from Social Data

论文:Low-rank Linear Cold-Start Recommendation from Social Data / 利用社交数据进行低秩线性冷启动推荐
作者:Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, Lexing Xie, Darius Braziunas
发表刊物:AAAI
发表年度:2017
下载地址:http://cm.cecs.anu.edu.au/documents/loco-aaai17-final.pdf

1、背景

这篇文章提供了一个简单有效的基于社交数据进行用户冷启动推荐的模型LoCo,来看一下该模型提出的背景。

研究证明使用用户辅助信息能够缓解用户冷启动问题,而且辅助信息的形式对冷启动预测的精度有影响。有研究证明了社交信息再冷启动推荐中的作用,基于社交信息的冷启动推荐算法可以分为基于近邻的方法和基于矩阵分解的方法,其中基于近邻的方法的缺点在于没有明确的目标函数,可能得到次优解,而基于矩阵分解的方法则优化比较麻烦。基于以上分析,作者提出了LoCo模型,该模型包括三个重要部分:多元线性回归、低秩限定和随机SVD算法,每个部分都比较简单,但作者在4个数据集上证明将他们组合起来效果很好。

作者概况了几种个性化推荐算法:

而后罗列了几种典型的利用社交信息的冷启动推荐算法:

  • 近邻+元数据相似性的方法(如Cos-Cos方法)

  • 带正则化的矩阵分解模型(如CMF模型)

  • 矩阵分解+特征映射框架(Lin-MAP或BPR-MAP方法)

 作者通过分析指出,这几种方法可以被纳入基于内容的线性模型框架下:

 基于此,指出了上述几种经典模型的缺陷:

2、模型

然后提出了自己的模型LoCo:直接使用多元线性回归学习从辅助信息到预测评分直接的关系:

考虑到社交信息的高维性,提出低秩限定来过滤掉一些伪相关信息:

 

考虑到优化的问题,提出借助randomised SVD算法。 

3、实验

作者在4个数据集上进行了实验:

实验证明LoCo算法性能优于几种经典的冷启动方法,而且运行效率更高。

 

4、实现

待更新...

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页