有这样一句谚语:“如果走路像鸭子,叫声也像鸭子,长得还像鸭子,那么它很可能就是一只鸭子。”用一幅图来生动表示:

KNN分类基本思想是:
- 计算待分类样品到每个训练样例的距离;
- 取距离最近的K个训练集样例;
- K个样品中哪个类别的训练样例占多数,则待分类元组就属于哪个类别。
KNN数学描述:
- 把每个样例看作n维空间上的一个数据点,n是属性个数。
- 对给定的测试样例z,计算其与训练集中其他数据点的距离(邻近度)。
样本点x和y之间的距离采用欧式距离:
或曼哈顿距离:
3.然后找出和z距离最近的K个数据点,将z分配到其最近邻的多数类。
KNN算法流程图:
最关键的参数就是K值,K值太小,预测结果不准且容易变动;K值太大,可能会误分。实践中,往往通过若干次实验来确定K值,取分类误差率最小的K值。
KNN算法优缺点:
①优点:
- 通过施加距离权重(如权值与距离成反比),可以较好避免样本不平衡问题;
- 算法简单,易于理解及实现。
②缺点:
- 计算量较大,但可以通过对样本点剪辑或对样本分群分层来优化;
- 对样本容量较小的分类容易产生误分。