运动路径规划,其实指的就是如何给出位置指令,我们姑且称为位置轨迹。位置轨迹由三个量来表示:位置、速度和加速度。
如果机器人移动轨迹的匀速插补方法在启停阶段存在速度阶跃,则会造成两个问题:
①启停时刻由于机器本体存在惯性力,会对机器人机械本体造成力冲击,驱动装置(电机或液压)无法补偿如此巨大的力而导致电流过载或饱和;
②机器人本体振动、冲击会影响加工质量,造成机械磨损影响使用寿命。
为了使机器人末端执行器从起始端到末端平滑过渡,需要对机器人的整个运动过程进行加减速控制,即设定机器人末端执行器整个运动路径的速度变化过程。常用的加减速控制算法有梯形速度曲线控制算法、S型速度曲线控制算法、正弦加减速控制算法等。每种控制算法各有特点,通过对几种算法的比较,选择应用场景选择最合适的算法作为轨迹规划过程中的加减速控制策略。
我们从速度、加速度两方面来观察两种路径规划曲线的特性:梯形曲线和S形曲线。
1.梯形曲线
它将整个运动过程分为匀加速→匀速→匀减速三个阶段。
在匀加速、匀减速过程中,加速度a为一固定值,但方向相反。
梯形速度曲线比较容易实现,但其加速度不连续,在内环的加速度闭环控制中,在加减速与匀速阶段衔接处,加速度反馈值会发生突变,这会给控制带来冲击,从而导致机器人本体发生冲击。
加加速度曲线中含有冲激函数。
2.S型曲线
S型速度曲线形状如字母S,曲线平滑,并将整个运动过程划分为7个阶段:
加加速度段→匀加速度段→减加速度段→匀速段→加减速度段→匀减速度段→减减速度段。
不同阶段速度衔接处加速度连续,且加速度的变化率可控,相比梯形加减速控制策略,消除了加速度突变冲击,并使插补过程具有柔性。
S型速度曲线柔性较好,克服了梯形速度曲线中存在的加速度突变,避免了机器人运动时的柔性冲击,但由于分段较多、结构复杂,导致算法计算相对复杂。