[论文笔记] CNN计算在工业场景下的一个模型优化案例

本文分析了一篇关于在高噪声环境下改进卷积神经网络(CNN)用于轴承故障诊断的论文。论文在凯斯西储大学的轴承数据集上进行了实验,通过引入门控循环单元(GRU)、注意力机制和SVM分类器,提高了模型在噪声数据上的识别精度。关键发现是SVM可能是模型消噪的关键因素,而原始数据的预变换能显著提高识别效率。
摘要由CSDN通过智能技术生成

0.背景

这是一篇论文笔记,现在正在处理轴承振动问题,《高噪声下改进卷积神经网络轴承故障诊断》,唐治尧,中国设备工程,2024,是随手找到的一篇使用大数据对既有振动数据集中的数据进行分析的类似样板实现。这里对这篇论文做笔记。

1.论文的目的,实验环境和结论

现有的工业或者竞赛数据集大多在实验环境采集得到,但是只要在现场采集过信号就知道,现场的信号要嘈杂地多。这篇文章在既有的在线可以获取的数据集——美国凯斯西储大学轴承研究所采集的滚动轴承数据:

Download a Data File | Case School of Engineering | Case Western Reserve University

在里面加入了随机的噪声。然后使用经过它改进的CNN算法,对比常见的各种公开算法,在对原始数据加入随机噪声后,比对各种算法的识别效果会是怎样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子正

thanks, bro...

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值