0.背景
这是一篇论文笔记,现在正在处理轴承振动问题,《高噪声下改进卷积神经网络轴承故障诊断》,唐治尧,中国设备工程,2024,是随手找到的一篇使用大数据对既有振动数据集中的数据进行分析的类似样板实现。这里对这篇论文做笔记。
1.论文的目的,实验环境和结论
现有的工业或者竞赛数据集大多在实验环境采集得到,但是只要在现场采集过信号就知道,现场的信号要嘈杂地多。这篇文章在既有的在线可以获取的数据集——美国凯斯西储大学轴承研究所采集的滚动轴承数据:
Download a Data File | Case School of Engineering | Case Western Reserve University
在里面加入了随机的噪声。然后使用经过它改进的CNN算法,对比常见的各种公开算法,在对原始数据加入随机噪声后,比对各种算法的识别效果会是怎样的。