Opencv数据类型对应关系

本文详细介绍了OpenCV中各种数据类型的通道数与位深的对应关系,为图像处理和计算机视觉项目的开发人员提供了宝贵的参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

opencv数据类型对应关系

在这里插入图片描述

通道数C1C2C3C4
CV_8U081624
CV_8S191717
CV_16U2101826
CV_16S3111927
CV_32S4122028
CV_32F5132129
CV_164F6142230

From:

https://blog.csdn.net/oemt_301/article/details/99072383

### 如何避免或处理 OpenCV 数据类型转换过程中的数值截断 #### 理解数据类型的范围和特性 OpenCV 中 `Mat` 对象支持多种不同的数据类型,每种类型都有其特定的取值范围。当进行不同类型间的转换时,如果目标类型的表示能力不足以容纳源类型的数据,则会发生截断现象[^2]。 对于常见的几种基本数据类型及其对应的深度(depth),如下所示: - **CV_8U**: 无符号字符型 (0 ~ 255) - **CV_8S**: 布尔型 (-127 ~ 127) - **CV_16U**: 半字节无符号整数 (0 ~ 65,535) - **CV_16S**: 半字节有符号整数 (-32,767 ~ 32,767) - **CV_32S**: 整形 (-2,147,483,647 ~ 2,147,483,647) - **CV_32F**: 浮点型 (~±3.4e−38 to ±3.4e+38) - **CV_64F/double**: 双精度浮点型 (~±2.2e−308 to ±1.8e+308) 这些不同类型的适用场景决定了它们之间互相转化的可能性与风险所在[^4]。 #### 防止截断的方法 为了防止在转换过程中发生不必要的截断错误,在执行任何可能改变像素值大小的操作之前应当采取预防措施: ##### 方法一:使用合适的缩放因子调整原始图像亮度级别 通过乘法运算可以有效地扩大或缩小输入矩阵内的每一个元素值,从而确保最终结果能够被新的数据类型所接受而不丢失信息量。例如,当你想要把一个单通道灰度级图片由 CV_8UC1 转变为更高位宽的形式如 CV_32FC1 或者相反方向的时候就可以考虑这种方法。 ```cpp // 将 uint8 图像转换为 float 并除以最大值使其归一化到 [0,1] img.convertTo(img_flt, CV_32F); img_flt /= 255; ``` ##### 方法二:利用饱和算术操作代替简单的强制转型 某些情况下直接应用 C++ 的 static_cast<> 函数可能会带来意外的结果;因此建议采用更安全的方式——即调用 convertScaleAbs() API 来完成这项工作。该函数会自动处理超出界限的情况并返回经过适当裁剪后的版本给用户。 ```cpp // 使用 convertScaleAbs 进行安全转换 cv::convertScaleAbs(src_mat, dst_mat); // 自动处理溢出情况 ``` 另外值得注意的是,在实际编程实践中还应该时刻关注可能出现的各种异常状况,并编写相应的错误捕捉机制以便及时发现潜在隐患并加以修复[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值