一文弄懂理解Batch Normalization在深度学习中的作用(含TF2.0实操代码)

神经网络在训练过程中往往会遇到一些问题:

问题1: 随着网络训练,浅层的权重发生变化,导致深层的输入变化很大。因此每层必须根据每批输入的不同分布重新调整其权重。这减缓了模型训练。如果我们可以使层的输入分布更相似,那么网络可以专注于学习类别之间的差异。

不同批次分布的另一个影响是梯度弥散。梯度弥散是一个大问题,特别是对于S形激活函数(sigmoid)。如果g(x)表示sigmoid激活函数,随着 |x| 增加,g’(x)趋于零。

问题2:当输入分布变化时,神经元输出也会变化。这导致神经元输出偶尔波动到S形函数的可饱和区域。在那里,神经元既不能更新自己的权重,也不能将梯度传递回先前的层。那么我们该如何保证神经元输出到不饱和区域?

如果我们可以将神经元输出限制在零附近的区域,我们可以确保每个层在反向传播期间都会返回一个有效的梯度。这将减少训练时间和提高准确率。

使用批量规范(BN)作为解决方案

批量标准化减轻了不同层输入对训练的影响。通过归一化神经元的输出,激活函数将仅接收接近零的输入。这确保了梯度的有效回传,解决了第二个问题。

批量归一化将层输出转换为单位高斯分布。当这些输出通过激活功能馈送时,层激活也将变得更加正常分布。

由于上一层的输出是下一层的输入,因此层输入的变化在不同批次输间的变化将显着减少。通过减少层的输入的变化分布,我们解决了第一个问题。

数学解释

通过批量归一化,我们为每个激活函数寻找均值为0,方差为1的分布作为输入。在训练期间,我们将激活输入x减去批次均值μ以实现零中心分布。

接下来,我们取x并将其除以批处理方差和一个小数字,以防止除以零σ+ε。这可确保所有激活输入分布方差为1。

最后,我们将得到的x进行线性变换。这样尽管在反向传播期间网络发生了变化,但仍能确保保持这种标准化效果。

在测试模型时,我们不使用当前批次均值或方差,因为这会破坏模型。相反,我们计算训练群体的移动均值和方差估计值。这些估计值是训练期间计算的所有批次平均值和方差的平均值。

批标准化的好处

1.有助于减少具有可饱和非线性函数的网络中的消失梯度问题。

通过批标准化,我们确保任何激活函数的输入不会进入饱和区域。批量归一化将这些输入的分布转换为0-1高斯分布。

2.正则化模型

Ioffe和Svegeddy提出了这一主张,但没有就此问题进行深入探讨。也许这是归一化层输入的结果?

3.允许更高的学习率

通过防止在训练期间消失梯度的问题,我们可以设置更高的学习率。批量标准化还降低了对参数标度的依赖性。大的学习速率可以增加层参数的规模,这导致梯度在反向传播期间被回传时放大。

使用TF2.0 以CIFA100数据集 自定义卷积网络 演示 有无BN 对训练和结果的影响

使用Keras实现Batch Normalization

导入需要的库

import tensorflow as tf
import numpy as np
import os
import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Input
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import GlobalAveragePooling2D
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense
from tensorflow.keras.layers import MaxPooling2D, Dropout, Flatten
tf.__version__

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import time
from keras.utils import np_utils

数据加载和预处理

我们使用了Cifar 100数据集,因为它具有一定的挑战性,并且不会训练太久。的预处理是zero-centering和image variation generator。

from keras.datasets import cifar100

(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
#scale and regularize the dataset
x_train = (x_train-np.mean(x_train))
x_test = (x_test - x_test.mean())
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
#onehot encode the target classes
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
train_datagen = ImageDataGenerator(shear_range=0.2,zoom_range=0.2,horizontal_flip=True)
train_datagen.fit(x_train)
train_generator = train_datagen.flow(x_train,y = y_train,batch_size=80,)

在Keras中构建模型

我们的架构将包括堆叠的3x3卷积。每个网络中有5个卷积块。最后一层是一个完全连接的层,有100个节点与softmax激活。 我们将构建4个不同的卷积网络,每个网络都具有sigmoid或ReLU激活以及批量标准化或不标准化。我们将比较每个网络的验证损失。

def conv_block_first(model, bn=True, activation="sigmoid"):
    """
    The first convolutional block in each architecture. Only    separate so we can specify the input shape.
    """    
   #First Stacked Convolution
    model.add(Conv2D(60,3, padding = "same", input_shape =   x_train.shape[1:]))
    if bn:
        model.add(BatchNormalization())
    model.add(Activation(activation))
    #Second Stacked Convolution
    model.add(Conv2D(60,3, padding = "same"))
    if bn:
        model.add(BatchNormalization())
    model.add(Activation(activation))
    model.add(MaxPooling2D())
    model.add(Dropout(0.15))
    return model

def conv_block(model, bn=True, activation = "sigmoid"):
    """
    Generic convolutional block with 2 stacked 3x3 convolutions, max pooling, dropout, 
    and an optional Batch Normalization.
    """
    model.add(Conv2D(60,3, padding = "same"))
    if bn:
        model.add(BatchNormalization())
    model.add(Activation(activation))
    model.add(Conv2D(60,3, padding = "same"))
    if bn:
        model.add(BatchNormalization())
    model.add(Activation(activation))
    model.add(MaxPooling2D())
    model.add(Dropout(0.15))
    return model

def conv_block_final(model, bn=True, activation = "sigmoid"):
    """
    I bumped up the number of filters in the final block. I made this separate so that I might be able to integrate Global Average Pooling later on. 
    """
    model.add(Conv2D(100,3, padding = "same"))
    if bn:
        model.add(BatchNormalization())
    model.add(Activation(activation))
    model.add(Conv2D(100,3, padding = "same"))
    if bn:
        model.add(BatchNormalization())
    model.add(Activation(activation))
    model.add(Flatten())
    return model

def fn_block(model):
    model.add(Dense(100, activation = "softmax"))
    return model

def build_model(blocks=3, bn=True, activation = "sigmoid"):
    """
    Builds a sequential network based on the specified parameters.
    blocks: number of convolutional blocks in the network, must be greater than 2.
    bn: whether to include batch normalization or not.
    activation: activation function to use throughout the network.
    """
    model = Sequential()
    model = conv_block_first(model, bn=bn, activation=activation)
    for block in range(1,blocks-1):
        model = conv_block(model, bn=bn, activation = activation)
    model = conv_block_final(model, bn=bn, activation=activation)
    model = fn_block(model)
    return model

编译四个对比用的模型

def compile_model(model, optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = ["accuracy"]):
    """
    Compiles a neural network.
    model: the network to be compiled.
    optimizer: the optimizer to use.
    loss: the loss to use.
    metrics: a list of keras metrics.
    """
    model.compile(optimizer = optimizer,
                 loss = loss,
                 metrics = metrics)
    return model
#COMPILING THE 4 MODELS
sigmoid_without_bn = build_model(blocks = 5, bn=False, activation = "sigmoid")
sigmoid_without_bn = compile_model(sigmoid_without_bn)

sigmoid_with_bn = build_model(blocks = 5, bn=True, activation = "sigmoid")
sigmoid_with_bn = compile_model(sigmoid_with_bn)

relu_without_bn = build_model(blocks = 5, bn=False, activation = "relu")
relu_without_bn = compile_model(relu_without_bn)

relu_with_bn = build_model(blocks = 5, bn=True, activation = "relu")
relu_with_bn = compile_model(relu_with_bn)

模型训练

没有BN的Sigmoid

可以看到训练无法收敛。有100个类,这个模型永远不会比随机猜测(10%准确率)获得更好的性能。

checkpoint = ModelCheckpoint('./TFmodels/',
    monitor='val_loss', save_weights_only=True,verbose=1,save_best_only=True, period=1)
history1 = sigmoid_without_bn.fit_generator(
        train_generator,
        steps_per_epoch=2000,
        epochs=20,
        verbose=1,
        validation_data=(x_test, y_test),
        callbacks = [checkpoint])

可视化结果

可以看到训练无法收敛。有100个类,这个模型永远不会比随机猜测(10%准确率)获得更好的性能。

def plot_graphs(history, string):
    plt.plot(history.history[string])
    plt.plot(history.history['val_'+string])
    plt.xlabel('epochs')
    plt.ylabel(string)
    plt.legend([string, 'val_'+string])
    plt.show()

def showresult(history):
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['accuracy']
    val_acc = history.history['val_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']

    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()

    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
    # 原文链接:https://blog.csdn.net/weixin_44612221/article/details/114278691

没有BN的ReLU

在没有批量规范的情况下实施ReLU使得训练初始效果不错,然后模型收敛到非最优的局部最小值。

history3 = relu_without_bn.fit_generator(
        train_generator,
        steps_per_epoch=2000,
        epochs=20,
        verbose=1,
        validation_data=(x_test, y_test),
        callbacks = [model_checkpoint])

具有BN的ReLU

与sigmoid模型一样,批量标准化提高了该网络的训练能力。

history4 = relu_with_bn.fit_generator(
        train_generator,
        steps_per_epoch=2000,
        verbose=1,
        epochs=20,
        validation_data=(x_test, y_test),
        callbacks = [model_checkpoint])

showresult(history4)

### 架构比较


我们清楚地看到了批量标准化的优势。没有批量标准化的ReLU和Sigmoid模型都无法保持训练性能提升。这可能是渐变消失的结果。具有批量标准化的体系结构训练得更快,并且比没有批量标准化的体系结构表现更好。

原文转自:培训_Dataguru炼数成金_国内首创逆向收费式网络培训|专注于Hadoop培训及大数据、数据分析、数据库、编程技术、运维自动化等网络逆向培训,但源代码是tensorflow1.X系列,1.x系列TF目前官方已经停止更新,经过自己改造,并修正了几个bug,

可以直接复制到 tensorflow 2.0 配置好的环境里无脑运行。

 用了Batch Normalization后,有时候可以弱化Dropout的使用。

Dropout VS Batch Normalization? 是时候放弃Dropout了

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

往事如yan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值