谱聚类算法(Spectral Clustering)

谱聚类是一种基于图论的聚类方法,利用样本数据的相似矩阵进行特征分解,解决传统聚类的复杂问题。通过计算拉普拉斯矩阵的特征值和特征向量,找到最优分割。其步骤包括生成邻接矩阵、归一化拉普拉斯矩阵、计算特征值和特征向量,最后使用k-means对特征向量进行聚类。谱聚类的优势在于识别任意形状的样本空间并收敛于全局最优解。
摘要由CSDN通过智能技术生成

谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut)。

clip_image001图1 谱聚类无向图划分——Smallest cut和Best cut

    这样,谱聚类能够识别任意形状的样本空间且收敛于全局最优解,其基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行聚类。

1 理论基础

    对于如下空间向量item-user matrix:

clip_image002

    如果要将item做聚类,常常想到k-means聚类方法,复杂度为o(tknm),t为迭代次数,k为类的个数、n为item个数、m为空间向量特征数:

    1 如果M足够大呢?

2 K的选取?

3 类的假设是凸球形的?

4 如果item是不同的实体呢?

5 Kmeans无可避免的局部最优收敛?

……

    这些都使常见的聚类问题变得相当复杂。

1.1 图的表示

    如果我们计算出item与item之间的相似度,便可以得到一个只有item的相似矩阵,进一步,将item看成了Graph(G)中Vertex(V),歌曲之间的相似度看成G中的Edge(E),这样便得到我们常见的图的概念。

    对于图的表示(如图2),常用的有:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值