线性代数学习

  

线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。

在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。

(选取基后,对象用向量表示,对象的运动用矩阵表示)

 

矩阵的本质是运动的描述。

矩阵也可以理解成一个坐标系。

因为对象的变换等价于坐标系的变换。

  Ma = b

在同一个基下,向量a在M的变换下,变成b。

  Ma = Ib

在M坐标系下量出向量a 和 在I坐标系下量出向量b 是同一个向量。

所以看特征值和特征向量:(M的特征值是λ,特征向量是a)

Ma = λa

在M坐标系下量出向量a和 在I坐标系下量出向量λa是同一个向量。

或者:

在同一个基下,向量a经过M矩阵变换,其方向不发生变化,长度变成λ倍。

 

 

矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。

理解这句话的关键,在于把“线性变换”与“线性变换的一个描述”区别开。一个是那个对象,一个是对那个对象的表述。

 同样一个线性变换,可以有多种不同方法来描述(不同矩阵)。

若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:

A = P-1BP

相似矩阵:就是同一个线性变换的不同的描述矩阵。

 

矩阵的迹 =  对角线的和 = 特征值的和

行列式等于特征值的乘积。行列式的几何意义是线性变换的有向体积。

 

参考:

矩阵的特征:特征值,特征向量,行列式,trace

https://zhuanlan.zhihu.com/p/25955676

矩阵理解

https://blog.csdn.net/myan/article/details/647511

https://blog.csdn.net/myan/article/details/649018

https://blog.csdn.net/myan/article/details/1865397 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值