图像超分辨率:发散-收敛网路D2C-SR: A Divergence to Convergence Approach for Real-World Image Super-Resolution

D2C-SR: A Divergence to Convergence Approach for Real-World Image Super-Resolution

1.论文目的

该论文引入一个从发散到收敛的网络,具体来说,首先训练4个网络分支,然后再融合为一个。

在这里插入图片描述

2.网络结构

网络结构比较清晰,如下图,Basic branch 一些 conv residual block, divergence阶段分别得到4个预测。
convergence阶段 通过weight map 进行像素级的fusion.

在这里插入图片描述

2.1 divergence阶段的损失函数

一个是重建损失L2, 每个分支单独的各自的损失。

在这里插入图片描述

一个是三元组损失,目的是 $I_{d}^i $ 与 I H R I_{HR} IHR 更接近,$I_{d}^i $ 之间更远
为了是损失更关注纹理细节,而不是颜色,亮度,因此首先转换为 Y 空间,再规范化

在这里插入图片描述

再计算残差

在这里插入图片描述

然后对 残差建立 三元组损失, 使 $I_{d}^i $ 与 I H R I_{HR} IHR 残差 比 $I_{d}^i $ 与 $I_{d}^j $ 更接近

在这里插入图片描述

其中trip

在这里插入图片描述

devergence阶段的总体损失

在这里插入图片描述

2.2 convergence 阶段的损失函数

收敛阶段就是如总体框架图所示,首先预测 weight map,然后通过weight map进行融合

在这里插入图片描述

损失函数使融合后的图像与 gt的L2 范数

在这里插入图片描述

3. 示例图

在这里插入图片描述

总结,创新点主要就是分别训练多个网络,然后再对各个网络的结果进行fusion. 效果为什么会好? 也许信息融合更多,也许网络模块更多,skip较多。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值