【论文笔记】无向图下的分布式时变二次优化(Quadratic Optimization)

写在前面

原论文:Distributed Time-Varying Quadratic Optimization for Multiple Agents under Undirected Graphs1.

由于个人喜好问题,本文只做原论文中的Problem 2,Section 3-C,Section 3-D相关笔记。

问题描述

优化问题
min ⁡ f ( x , t ) = ∑ i = 1 n f i ( x i , t ) s.t. L x = 0 , x ∈ Ω ( 1 ) \begin{aligned} \min&\quad f(x,t)=\sum_{i=1}^n f_i(x_i,t)\\ \text{s.t.}&\quad Lx=0,\quad x\in\Omega \end{aligned} \qquad (1) mins.t.f(x,t)=i=1nfi(xi,t)Lx=0,xΩ(1)
其中 x = [ x 1 T , ⋯   , x n T ] T x=[x_1^T,\cdots,x_n^T]^T x=[x1T,,xnT]T Ω = Ω 1 × ⋯ × Ω n \Omega=\Omega_1\times\cdots\times \Omega_n Ω=Ω1××Ωn

分布式算法

改成罚函数形式
min ⁡ F ( x , t ) = ∑ i = 1 n f i ( x i , t ) + 1 2 β x T L x , x ∈ Ω ( 2 ) \min F(x,t)=\sum_{i=1}^n f_i(x_i,t)+\frac{1}{2}\beta x^TLx,\quad x\in\Omega\qquad (2) minF(x,t)=i=1nfi(xi,t)+21βxTLx,xΩ(2)
罚函数投影算法
x ˙ i = k P Ω i ( x i − α ∂ f i ( x i , t ) ∂ x i − α β ∑ j = 1 n a i j ( x i − x j ) ) − k x i ( 3 ) \dot x_i=kP_{\Omega_i}\left(x_i-\alpha \frac{\partial f_i(x_i,t)}{\partial x_i}-\alpha\beta\sum_{j=1}^n a_{ij}(x_i-x_j) \right)-kx_i\qquad (3) x˙i=kPΩi(xiαxifi(xi,t)αβj=1naij(xixj))kxi(3)
其中 α \alpha α k k k是待定参数。

结论与证明

Lemma 32: For all x , y ∈ R n x,y\in\mathbb R^n x,yRn and a nonempy compact set K ⊂ R n K\subset \mathbb R^n KRn, ∥ P K ( x ) − P K ( y ) ∥ ≤ ∥ x − y ∥ \|P_K(x)-P_K(y)\|\leq \|x-y\| PK(x)PK(y)xy.

Lemma 6: x ∗ ( t ) x^*(t) x(t) is an optimal solution of (2) if and only if for some fixed α > 0 \alpha>0 α>0, P Ω ( − α ∂ F ( x ∗ ( t ) , t ) ∂ x + x ∗ ( t ) ) = x ∗ ( t ) P_\Omega(-\alpha\frac{\partial F(x^*(t),t)}{\partial x}+x^*(t))=x^*(t) PΩ(αxF(x(t),t)+x(t))=x(t), ∀ x ∈ Ω \forall x\in\Omega xΩ, t > t 0 t>t_0 t>t0.

注意到Lemma 6成立,是因为 0 ∈ ∂ F ( x ∗ ) + N Ω ( x ∗ ) 0\in\partial F(x^*)+N_\Omega(x^*) 0F(x)+NΩ(x)(Lemma 2.13)。

最优条件得到了,下一步就是收敛性。

Theorem 5: The updating law in (3) guarantees ∥ x ( t ) − x ∗ ( t ) ∥ \|x(t)-x^*(t)\| x(t)x(t) uniformly ultimately bounded as t → ∞ t\to \infty t with ultimate bound ∥ x ( t ) − x ∗ ( t ) ∥ ≤ 1 2 k ( 1 − ε L ) − 1 ω ˉ L \|x(t)-x^*(t)\|\leq \sqrt{\frac{1}{2k(1-\varepsilon_L)-1}}\bar \omega_L x(t)x(t)2k(1εL)11 ωˉL, where 0 < ε L < 1 0<\varepsilon_L<1 0<εL<1 is a positive constant, ω ˉ L \bar \omega_L ωˉL is the upper bound of ∥ x ˙ ∗ ( t ) ∥ \|\dot x^*(t)\| x˙(t), provided that there exist positive constants q 1 q_1 q1 and q 2 ≥ q 1 q_2\geq q_1 q2q1 such that q 1 I ≤ R ( t ) ≤ q 2 I q_1 I\leq R(t)\leq q_2I q1IR(t)q2I, x ˙ ∗ ( t ) \dot x^*(t) x˙(t) exists, the elements in R ( t ) R(t) R(t) and x ∗ ( t ) x^*(t) x(t), x ˙ ∗ ( t ) \dot x^*(t) x˙(t) are bounded and the control parameters ε L , α , β \varepsilon_L, \alpha,\beta εL,α,β and k k k are chosen such that
q 2 + β λ max ( L ) − q 1 q 2 + β λ max ( L ) + q 1 < ε L < 1 , k > 1 2 ( 1 − ε L ) , 1 − ε L q 1 < α < 1 + ε L q 2 + β λ max ( L ) . \begin{aligned} \frac{q_2+\beta \lambda_\text{max} (L)-q_1}{q_2+\beta\lambda_\text{max}(L)+q_1}&<\varepsilon_L<1,\quad k>\frac{1}{2(1-\varepsilon_L)},\\ \frac{1-\varepsilon_L}{q_1}&<\alpha<\frac{1+\varepsilon_L}{q_2+\beta\lambda_\text{max}(L)}. \end{aligned} q2+βλmax(L)+q1q2+βλmax(L)q1q11εL<εL<1,k>2(1εL)1,<α<q2+βλmax(L)1+εL.

证明:注意到原论文考虑二次代价函数,即
F ( x , t ) = 1 2 x T ( R ( t ) + β L ) x + s T ( t ) x + h ( t ) F(x,t) = \frac{1}{2}x^T(R(t)+\beta L)x+s^T(t)x+h(t) F(x,t)=21xT(R(t)+βL)x+sT(t)x+h(t)
则有
∂ F ( x , t ) ∂ x = R ( t ) x + β L x + s ( t ) \frac{\partial F(x,t)}{\partial x} = R(t)x+\beta Lx+s(t) xF(x,t)=R(t)x+βLx+s(t)
式(3)重写为
x ˙ = k P Ω ( x − α R ( t ) x − β L x − α s ( t ) ) − x \dot x=kP_\Omega(x-\alpha R(t)x-\beta Lx-\alpha s(t))-x x˙=kPΩ(xαR(t)xβLxαs(t))x
定义李雅普诺夫函数 V = 1 2 e T e V=\frac{1}{2}e^Te V=21eTe,其中 e = x − x ∗ ( t ) e=x-x^*(t) e=xx(t) x ∗ ( t ) x^*(t) x(t)满足 P Ω ( x ∗ ( t ) − α R ( t ) x ∗ ( t ) − α β L x ∗ ( t ) − α s ( t ) ) = x ∗ ( t ) P_\Omega(x^*(t)-\alpha R(t)x^*(t)-\alpha\beta L x^*(t)-\alpha s(t))=x^*(t) PΩ(x(t)αR(t)x(t)αβLx(t)αs(t))=x(t)

那么,可以得到
P Ω ( x − α R ( t ) x − α s ( t ) ) − x = P Ω ( e + x ∗ ( t ) − α R ( t ) e − α R ( t ) x ∗ ( t ) − α β L e − α β L x ∗ ( t ) − α s ( t ) ) − P Ω ( x ∗ ( t ) − α R ( t ) x ∗ ( t ) − α β L x ∗ ( t ) − α s ( t ) ) − e \begin{aligned} P_\Omega&(x-\alpha R(t)x-\alpha s(t))-x\\ &=P_\Omega(e+x^*(t)-\alpha R(t)e-\alpha R(t)x^*(t)-\alpha\beta Le -\alpha\beta L x^*(t) -\alpha s(t))\\ &\quad -P_\Omega(x^*(t)-\alpha R(t)x^*(t)-\alpha \beta L x^*(t) -\alpha s(t))-e \end{aligned} PΩ(xαR(t)xαs(t))x=PΩ(e+x(t)αR(t)eαR(t)x(t)αβLeαβLx(t)αs(t))PΩ(x(t)αR(t)x(t)αβLx(t)αs(t))e
李雅普诺夫函数对时间导数为
V ˙ = e T ( k P Ω ( x − α R ( t ) x − α β L x − α s ( t ) ) − k x − x ˙ ∗ ( t ) ) ≤ − k e T e + k ∥ e ∥ ∥ ζ ∥ + ∥ e ∥ ∥ x ˙ ∗ ( t ) ∥ \begin{aligned} \dot V&=e^T(kP_\Omega(x-\alpha R(t)x-\alpha \beta L x-\alpha s(t))-kx-\dot x^*(t))\\ &\leq -ke^Te+k\|e\|\|\zeta\|+\|e\|\|\dot x^*(t)\| \end{aligned} V˙=eT(kPΩ(xαR(t)xαβLxαs(t))kxx˙(t))keTe+keζ+ex˙(t)
其中
ζ = P Ω ( e + x ∗ ( t ) − α R ( t ) e − α R ( t ) x ∗ ( t ) − α β L e − α β L x ∗ ( t ) − α s ( t ) ) − P Ω ( x ∗ ( t ) − α R ( t ) x ∗ ( t ) − α β L x ∗ ( t ) − α s ( t ) ) \begin{aligned} \zeta &= P_\Omega(e+x^*(t)-\alpha R(t)e-\alpha R(t)x^*(t)-\alpha \beta L e-\alpha \beta L x^*(t)-\alpha s(t))\\ &\quad -P_\Omega(x^*(t)-\alpha R(t)x^*(t)-\alpha \beta L x^*(t)-\alpha s(t)) \end{aligned} ζ=PΩ(e+x(t)αR(t)eαR(t)x(t)αβLeαβLx(t)αs(t))PΩ(x(t)αR(t)x(t)αβLx(t)αs(t))
利用Lemma 3,可得 ∥ ζ ∥ ≤ ∥ e − α R ( t ) e − α β L e ∥ \|\zeta\|\leq \|e-\alpha R(t)e-\alpha \beta L e\| ζeαR(t)eαβLe,故
V ˙ ≤ − k e T e + k ∥ e ∥ ∥ e − α R ( t ) e − α β L e ∥ + ∥ e ∥ ∥ x ˙ ∗ ( t ) ∥ ≤ − k ( 1 − 1 2 k − ∥ I − α R ( t ) − α β L ∥ ) ∥ e ∥ 2 + 1 2 ∥ x ∗ ( t ) ∥ 2 \begin{aligned} \dot V&\leq -ke^Te+k\|e\|\|e-\alpha R(t)e-\alpha \beta L e\|+\|e\|\|\dot x^*(t)\|\\ &\leq -k\left(1-\frac{1}{2k}-\|I-\alpha R(t)-\alpha\beta L\|\right)\|e\|^2+\frac{1}{2}\|x^*(t)\|^2 \end{aligned} V˙keTe+keeαR(t)eαβLe+ex˙(t)k(12k1IαR(t)αβL)e2+21x(t)2
由于 1 − ε L q 1 < α < 1 + ε L q 2 + β λ max ( L ) \frac{1-\varepsilon_L}{q_1}<\alpha<\frac{1+\varepsilon_L}{q_2+\beta\lambda_\text{max}(L)} q11εL<α<q2+βλmax(L)1+εL(注意 λ min ( L ) = 0 \lambda_\text{min}(L)=0 λmin(L)=0),可得 ∥ I − α R ( t ) − α β L ∥ ≤ ε L \|I-\alpha R(t)-\alpha \beta L\|\leq \varepsilon_L IαR(t)αβLεL,即
V ˙ ≤ − k ( 1 − 1 2 k − ε L ) ∥ e ∥ 2 + 1 2 ω ˉ L 2 \dot V\leq -k(1-\frac{1}{2k}-\varepsilon_L)\|e\|^2+\frac{1}{2}\bar \omega_L^2 V˙k(12k1εL)e2+21ωˉL2
因此 V ˙ < 0 \dot V<0 V˙<0 ∀ ∥ e ∥ 2 > 1 2 k ( 1 − ε L ) − 1 ω ˉ L 2 \forall \|e\|^2>\frac{1}{2k(1-\varepsilon_L)-1}\bar \omega_L^2 e2>2k(1εL)11ωˉL2。即误差一致最终有界,最终界为 ∥ e ∥ ≤ 1 2 k ( 1 − ε L ) − 1 ω ˉ L \|e\|\leq \sqrt{\frac{1}{2k(1-\varepsilon_L)-1}}\bar \omega_L e2k(1εL)11 ωˉL


  1. Sun, C., Ye, M., & Hu, G. (2017). Distributed Time-Varying Quadratic Optimization for Multiple Agents under Undirected Graphs. IEEE Transactions on Automatic Control, 62(7), 3687–3694. https://doi.org/10.1109/TAC.2017.2673240 ↩︎

  2. Kinderlehrer, D. and Stampacchia, G. (1980). An Introduction to Variational Inequalities and Their Applications. Philadelphia, PA, USA: SIAM. ↩︎

  3. Liang, S., Zeng, X., & Hong, Y. (2018). Distributed Nonsmooth Optimization with Coupled Inequality Constraints via Modified Lagrangian Function. IEEE Transactions on Automatic Control, 63(6), 1753–1759. https://doi.org/10.1109/TAC.2017.2752001 ↩︎

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值