第一章 线性代数

目录

 

一、导学

二、课程学习的注意事项

三、线性代数与机器学习

四、开发环境的搭建


一、导学

1.为什么要学习线性代数

线性代数是近代科学发展过程中最重要的基础数学之一

线性代数则在研究“一组数”,即向量

2.为什么要学习向量

真实的世界是多维度的;

单变量不足以描述真是世界;

用单变量描述真实世界是不方便的;

a.可以看懂大多数教材文献资料上的线性代数相关的公式或者符号:

b.对线性代数有更感性的认识

c.对于数学概念,不做生硬的定义

二、课程学习的注意事项

关于证明:

证明练习是数学学习的非常重要的一环

线性代数本身逻辑性很强,一环扣一环,每一个结论都可以严格证明。

避免抽象数学,理论数学;

双刃剑:

更简单的入门

比一般搞笑的线性代数的内容会少“纯”数学的部分;

尝试把理论数学的内容剥离出来;

涉及应用:

这个课程的重点是线性代数原理的学习;

应用点到为止,不是应用课程;

E= mc^{2}

关于编程实践;

强调原理性;而非数值计算的最忧;(课程)

编程是为了辅助理解原理,对一些结论不编程,二直接使用现成的库函数;

对于库函数,也不涉及全部(numpy ,scipy)

三、线性代数与机器学习

a、入门机器学习,不一定要把数学先学透!

基础的高数,线数,概率达到及格水平即可入门机器学习

入门机器学习后,有目的的来补数学,效果更好!

每个人根据自己的实际情况,制定学习计划;

b、线性代数只是机器学习所涉及的数学一方面

高等数学;

统计学-统计学习;

凸优化

其他(组合数学等)

学习机器学习,不一定要把数学先学透。

学习资料:http://www.deeplearningbook.org/

四、开发环境的搭建

1.安装anaconda。

2.python3.6

3.Pycharm

import sys
import numpy
import scipy

print(sys.version)
print(numpy.__version__)
print(scipy.__version__)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子非愚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值