目录
一、导学
1.为什么要学习线性代数
线性代数是近代科学发展过程中最重要的基础数学之一
线性代数则在研究“一组数”,即向量
2.为什么要学习向量
真实的世界是多维度的;
单变量不足以描述真是世界;
用单变量描述真实世界是不方便的;
a.可以看懂大多数教材文献资料上的线性代数相关的公式或者符号:
b.对线性代数有更感性的认识
c.对于数学概念,不做生硬的定义
二、课程学习的注意事项
关于证明:
证明练习是数学学习的非常重要的一环
线性代数本身逻辑性很强,一环扣一环,每一个结论都可以严格证明。
避免抽象数学,理论数学;
双刃剑:
更简单的入门
比一般搞笑的线性代数的内容会少“纯”数学的部分;
尝试把理论数学的内容剥离出来;
涉及应用:
这个课程的重点是线性代数原理的学习;
应用点到为止,不是应用课程;
关于编程实践;
强调原理性;而非数值计算的最忧;(课程)
编程是为了辅助理解原理,对一些结论不编程,二直接使用现成的库函数;
对于库函数,也不涉及全部(numpy ,scipy)
三、线性代数与机器学习
a、入门机器学习,不一定要把数学先学透!
基础的高数,线数,概率达到及格水平即可入门机器学习
入门机器学习后,有目的的来补数学,效果更好!
每个人根据自己的实际情况,制定学习计划;
b、线性代数只是机器学习所涉及的数学一方面
高等数学;
统计学-统计学习;
凸优化
其他(组合数学等)
学习机器学习,不一定要把数学先学透。
学习资料:http://www.deeplearningbook.org/
四、开发环境的搭建
1.安装anaconda。
2.python3.6
3.Pycharm
import sys
import numpy
import scipy
print(sys.version)
print(numpy.__version__)
print(scipy.__version__)