YOLOv8 自动驾驶系统

以下是一个完整的 YOLOv8 自动驾驶系统 技术方案,涵盖 感知、预测、规划、控制全栈实现,并提供模块化代码和部署指南。系统设计注重实时性、多传感器融合和嵌入式部署能力。


一、系统架构


二、核心模块实现

1. 多模态感知(Perception)

python

# perception/multimodal_detector.py
import torch
from ultralytics import YOLO
from pointnet2 import PointNet2

class MultimodalDetector:
    def __init__(self):
        self.yolo = YOLO("yolov8n-seg.pt")  # 带分割的YOLOv8
        self.lidar_model = PointNet2().eval()
        self.calib = load_calibration()

    def run(self, img, lidar_points):
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路飞VS草帽

感谢支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值