自用计算机考研复试英语翻译常见词汇

自用考研复试英语翻译常见词汇

http:hyper text transfer protocal
tcp:transmission control protocol
udp:user datagram protocol
smtp:simple mail transfer ~
ftp:file ~ ~
www:world wide web
fifo: First Input First Output
snmp: simple network management ~
DHCP:dynamic host configuration ~
PPP:point to point ~
IoT:internet of things
vpn:virtual private network
dns:domain name system
igp:interior gateway protocol
egp:external gateway protocol
gui:Graphical User Interface

analog signal 模拟信号
digital signal 数字信号
channel 信道
ethernet 以太网
frequency division multiplexing 频分复用
time division multiplexing 时分复用
code division multiplexing 码分复用
chip 码片
monochrome 单色

SVM:support vector machine
bfs:breath first search
dfs:depth first search
ai:artificial intelligence
sql:structured query language
ddl:data defination language
dcl:control
dml:manipulated
dql:query

transaction:事务
trigger:触发器
procedure:存储过程

mdr:Memory data Register
mar:Memory Address Register

频率:frequency

游标:cursor
会话:session
核:kernel
递推:recurrence
递归:recursion (来自算法之禅)
归纳法:Induction
高等数学:Advanced Mathematics
线性代数:linear algebra
概率论:probability theory
贝叶斯公式:Bayesian formula
监督学习:Supervised learning
半监督:semisupervised learning
内积:inner product
regression 回归
clustering 聚类
validation set 验证集
hypothesis function 假设函数
carrier sense multiple access 载波监听多点接口
contention period 争用期
collision window 碰撞窗口
jamming signal 人为干扰信号
derivative 导数
convex function 凸函数
converge 收敛
Feature scaling 特征缩放
mean normalization 均值归一化
Linear Algebra 线性代数
Matrices and vectors 矩阵和向量
inverse and transpose 逆和转置
Normal Equation 正态方程

### 大模型 RAG 开发教程与实现方案 #### 什么是RAG? 信息检索增强生成(Retrieval-Augmented Generation, 简称RAG)是一种结合了检索系统和生成模型的技术,旨在提高大型语言模型的性能。它通过将外部知识库中的数据引入到生成过程中,使得生成的内容更准确、上下文一致且实时更新[^1]。 #### RAG的核心工作流程 RAG 的核心机制分为以下几个部分: - **检索阶段**:利用搜索引擎或其他检索工具从外部数据库中获取相关信息。 - **增强阶段**:将检索到的数据作为额外的上下文输入传递给生成模型,从而帮助其更好地理解问题并提供精确的回答[^2]。 - **生成阶段**:综合用户的查询以及之前检索得到的知识片段,形成完整的提示模板,并将其送入大语言模型以获得最终结果[^3]。 #### 技术选型建议 对于希望开展基于大模型RAG项目开发者来说,可以从GitHub等平台上寻找合适的开源框架来加速开发进程。这些框架通常已经实现了上述提到的主要组件,并提供了灵活配置选项以便适配不同应用场景下的具体需求。 #### 示例代码展示 下面给出一段简单的Python伪代码用于说明如何搭建一个基础版本的RAG应用: ```python from transformers import pipeline import faiss from datasets import load_dataset def build_index(data): index = faiss.IndexFlatL2(len(data[0])) index.add(np.array(data)) return index def retrieve(index, query_vector, k=5): _, indices = index.search(query_vector.reshape(1,-1),k) return dataset.select(indices.flatten()) def generate(contexts, question): nlp = pipeline('question-answering') answers = [] for context in contexts: answer = nlp({'context': context,'question': question}) answers.append(answer['answer']) return max(set(answers), key=answers.count) dataset = load_dataset("my_knowledge_base")["train"]["text"] index = build_index([embed(d) for d in dataset]) query = "What is the capital of France?" retrieved_docs = retrieve(index, embed(query)) response = generate(retrieved_docs, query) print(response) ``` 此段代码展示了如何创建向量索引、执行文档检索以及调用预训练问答模型完成最后一步文本生成的过程。 #### 学习资源推荐 如果想深入研究关于AI大模型特别是涉及到像RAG这样的高级主题,则可能需要一些系统的理论和技术积累。这里有一份包含大量宝贵资料的学习包可供参考[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值