第一个公式上篇文章已经出现了,行操作得到 D 中的主元:
1、如果
符号 ± 取决于行交换的次数是奇数还是偶数,三角因子满足 detL=detU=1 , detD=d1…dn
对于
2×2
的情况,标准
LDU
分解是
主元的乘积是
ad−bc
,这是对角矩阵
D
的行列式。如果第一步是一个行交换,那么主元是
例1:
矩阵的主元就是
D
中的
MATLAB软件就是根据主元来计算行列式的,但是把所有信息都浓缩在主元上的话,我们无法知道一个元素的变化如何影响行列式,我们希望用 n2 个元素来明确的给出行列式的表达式。
对于
n=2
,我们知道
ad−bc
为行列式的值,对于
n=3
,我们也知道它的形式:
我们的目标是根据 detA 的性质1-3直接推导出这些式子。
首先,每行可以看成坐标方向的向量:
然后我们利用线性性质:
每行都分离到
n
个坐标方向,所以这个展开式有
现在只需要关注在不同方向上行,非零行只能由他们产生。假设第一行在
α
列上有一个非零元素,第二行在
β
列上有非零元素,最后一行在
v
列上有一个非零元素,列数
除了这
n!
个行列式外其余的都是零,因为有一列是重复的。(对于第一列
α
有
n
个选择,对于
这些就是 (1,2,3) 的 3!=6 中方式的置换。
A
的行列式现在简化为六个更简单的行列式,接下来提出因子
每一项都有
n=3
个
aij
元素的乘积,如果列的顺序是
(α,…,v)
,那个该项的就是
a1α⋯anv
乘以置换矩阵
P
行列式的乘积,整个矩阵的行列式就是这
对于一个 n×n 的矩阵,这个和需要处理 n! 个置换 (α,…,v) 。
接下来的问题就是找出
P
的行列式,而它是对单位矩阵进行行变换得到的,每执行一次行变换会给反转行列式的符号:
根据行交换次数的奇偶性决定正负号。
对于
n=2
的情况,我们只有
(1,2),(2,1)
:
公式(6)看着的确不想简单的公式,然而,通过它我们明白为何它满足性质1-3。对于 A=I ,除了列的顺序为 (1,2,…,n) 外,其他情况的 aij 乘积都是零,留下的唯一项得出 detI=1 。因为性质3(行列式线性依赖于第一行 a11,a12,…,a1n )是我们最感兴趣的,随意一会再讲解性质2。
观察
a1αa2β⋯anv
,第一列为
α=1
时,那么就留下
(β,…,v)
的置换供其余列选择,我们将他们收集起来得到
a11C11
:
同样的,
a12
可以乘以更小的行列式
C12
,不断用
a1j
进行下去的话,公式(6)就变成:
这就表明行列式 detA 线性依赖于第一行的元素。
例2:对于
3×3
矩阵,用这种方式可以得到:
C11,C12,C13 是括号内的 2×2 行列式。
代数余子式
我们知道
C1j
取决于
2,ldots,n
行,此时第一行完全由
a1j
确定。更进一步,
a1j
也可以确定第
j
列,这时代数余子式
对于
n
阶行列式,将会得到
第二个代数余子式 C12 是 a23a31−a21a33 ,也就是 detM12 乘以-1,同样的方法也适用于 n×n 矩阵。
对于其他行列说,同样可以进行这种扩展,通过将该行和第一行交换即可证明其正确性。我们需要记住的是对于
Mij
需要删除
A
的第
2、
代数余子式
C1j
就是
Mij
的行列式的绝对值:
这些公式将
detA
表示成
n−1
阶行列式的组合,通过归纳法定义了
n
阶矩阵的行列式,一个
这里有一个结论:
detA=detAT
,我们可以用
A
的列来扩展,也就是
例3:
4×4
的二阶微分矩阵
A4
在第一行只有两个非零元素:
C11
通过擦除第一行和第一列得到,和原来的模式一样:
对于
a12=−1
,移除第二列得到代数余子式
C12
:
最后留下了
2×2
的行列式,将第一行的加起来得到
2C11−C12
:
将同样的思路应用到
A5,A6,An
上:
这个公式给出了
An
矩阵行列式的递推公式,当
An
的行列式是
n+1
阶时,通过前面的
n,n−1
阶的行列式即可得到:
答案 n+1 和文章开始部分主元乘积是一致的。