漫步数理统计九——离散随机变量

本文介绍了离散随机变量的基本概念,包括定义、概率质量函数及其性质,并通过几个具体例子展示了如何计算离散随机变量的概率及变换后的随机变量的分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 对于一个随机变量,如果它的空间要么有限,要么可数,那么我们称其是一个离散随机变量。

对于集合 D ,如果它的元素是可列的,那么我们称这个集合是可数的;例如在 D 与正整数之间存在一个一一对应的关系。

1 考虑抛硬币产生的独立序列,每个结果要么是头 (H) 要么是尾 (T) 。进一步,在每次抛的过程中,我们假设 H,T 是等可能的,即 P(H)=P(T)=12 。样本空间 C 由像 TTHTHHT 这样的序列组成,令随机变量 X 第一次抛出头时所抛的次数,那么对于给定的序列,X=3。显然 X 的空间是D={1,2,3,4,},当开始是 H X=1,因此 P(X=1)=12 ,同样得当序列为 TH X=2 ,根据独立性可知概率 P(X=2)=(12)(12)=14 。更一般得,如果 X=x ,其中 x=1,2,3,4, ,那么前面有 x1 次为尾,即 TTTH ,所以根据独立性,我们有

P(X=x)=(12)x1(12)=(12)x,x=1,2,3,

这个空间是可数的。一个有趣的事件是第一处出现头的次数为奇数;例如 X={1,3,5,} ,这个事件的概率为

P[X{1,3,5,}]=x=1(12)2x1=1/21(1/4)=23

通过上面的例子表明,关于离散随机变量的概率可以用 P(X=x) 的概率求出来,这些概率确定了一个重要的函数,定义下:

2 X 是离散随机变量,空间为D X 的概率质量函数由

pX(x)=P[X=x],for xD

给出。

注意,pmf满足下面两条性质:

(i)0pX(x)1,xD;(ii)ΣxDpX(x=1)

对于离散集合 D ,如果一个函数满足性质 (i)(ii) ,那么这个函数唯一确定了随机变量的分布。

X 是离散随机变量,空间为D FX(x) 的不连续点定义了质量;即如果 x FX的一个不连续点,那么 P(X=x)>0 。现在我们将随机变量空间与概率为正的点区别开来,对那些空间 X 中概率为正的点我们定义其为随机变量X 的支撑,我们经常用 S 来表示 X 的支撑,注意SD,当然也有可能 S=D

2 现在有100个保险丝,从中随机抽出5个进行检测;如果5个均合格,那么这100个接受。事实上,这100个中有20个不合格,那么该保险丝被接受的概率为

(805)(1005)=0.32

更一般得,令随机变量 X 是5个中不合格的个数,那么X的pmf为

pX(x)=(20x)(805x)(1005)0for x=0,1,2,3,4,5elsewhere

很明显, X 的空间是D={0,1,2,3,4,5},这是满足超几何分布的随机变量的实例,基于这些讨论很容易画出 X cdf的图像。

在统计学中经常会遇到这样的问题,我们有一个随机变量X 并且知道它的分布,然而我们感兴趣的是随机变量 Y ,他它是X的某个变量, Y=g(X) 。尤其是我们想确定 Y 的分布,假设X在空间 DX 中是离散的,那么 Y 的空间是DY={g(x):xDX}。现在考虑两种情况:

首先 g 是一对一的,那么Y的pmf为

pY(y)=P[Y=y]=P[g(X)=y]=P[X=g1(y)]=pX(g1(y))(1)

3 考虑例1的几何随机变量 X X是第一次出现头时所抛硬币的次数,令 Y 是第一次出现头时前面所抛硬币的次数,即Y=X1。这时函数 g g(x)=x1,其逆为 g1(y)=y+1 Y 的空间是DY={0,1,2,},根据等式1的表达式可得 Y 的pmf是

pY(y)=pX(y+1)=(12)y+1,for y=0,1,2,

4 X 的pmf为

pX(x)={3!x!(3x)!(23)x(13)3x0x=0,1,2,3elsewhere

我们现在求随机变量 Y=X2 的pmf pY(y) ,变换 y=g(x)=x2 DX={x:x=0,1,2,3} 映射到 DY={y:y=0,1,4,9} ,一般而言, y=x2 不是一对一映射的;但是这里是满足条件的,因为 DX={x:x=0,1,2,3} 中的 x 不存在负值,即我们有单值的反函数x=g1(y)=y(不是 y ),并且

pY(y)=pX(y)=3!(y)!(3y)!(23)y(13)3y, y=0,1,4,9

第二种情况中的变换 g(x) 不是一对一的。虽然不是绝对的,但是对大多数涉及离散随机变量的应用来说, Y 的pmf通过直接的方法就能得到,为此我们给出两个例子。

考虑例3中的几何随机变量,我们玩一个游戏,如果第一次头出现的次数为偶数甲方赢一元,如果是奇数那么甲方输一元,令Y表示我们的净收益,那么 Y 的空间是{1,1}。例1 中已经计算出 X 为奇的概率为23,因此 Y 的分布为pY(1)=2/3,pY(1)=1/3

考虑另一个例子,令 Z=(X2)2 ,其中 X 是例1的几何随机变量,那么Z的空间是 DZ={0,1,4,9,16,} ,注意当且仅当 X=2 Z=0 ;当且仅当 X=1 或者 X=3 Z=1 ;而其他情况存在一对一的关系: x=z+2,z{4,9,16,} 。因此 Z 的pmf是:

pZ(x)=pX(2)=14pX(1)+pX(3)=58pX(z+2)=14(12)zfor z=0for z=1for z=4,9,16,

为了验证其正确性,读者可以试着计算 Z <script type="math/tex" id="MathJax-Element-2666">Z</script>的pmf在其空间上求和等于1。

博文pdf版本下载地址:http://pan.baidu.com/s/1i5OaIUT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值