定义1: 对于一个随机变量,如果它的空间要么有限,要么可数,那么我们称其是一个离散随机变量。
对于集合 D ,如果它的元素是可列的,那么我们称这个集合是可数的;例如在 D 与正整数之间存在一个一一对应的关系。
例1:
考虑抛硬币产生的独立序列,每个结果要么是头
(H)
要么是尾
(T)
。进一步,在每次抛的过程中,我们假设
H,T
是等可能的,即
P(H)=P(T)=12
。样本空间
C
由像
TTHTHHT⋯
这样的序列组成,令随机变量
X
第一次抛出头时所抛的次数,那么对于给定的序列,
这个空间是可数的。一个有趣的事件是第一处出现头的次数为奇数;例如
X=∈{1,3,5,…}
,这个事件的概率为
通过上面的例子表明,关于离散随机变量的概率可以用 P(X=x) 的概率求出来,这些概率确定了一个重要的函数,定义下:
定义2:
令
X
是离散随机变量,空间为
给出。
注意,pmf满足下面两条性质:
对于离散集合 D ,如果一个函数满足性质 (i)(ii) ,那么这个函数唯一确定了随机变量的分布。
令
X
是离散随机变量,空间为
例2:
现在有100个保险丝,从中随机抽出5个进行检测;如果5个均合格,那么这100个接受。事实上,这100个中有20个不合格,那么该保险丝被接受的概率为
更一般得,令随机变量
X
是5个中不合格的个数,那么
很明显,
X
的空间是
在统计学中经常会遇到这样的问题,我们有一个随机变量
首先
g
是一对一的,那么
例3:
考虑例1的几何随机变量
X
,
例4:
令
X
的pmf为
我们现在求随机变量
Y=X2
的pmf
pY(y)
,变换
y=g(x)=x2
将
DX={x:x=0,1,2,3}
映射到
DY={y:y=0,1,4,9}
,一般而言,
y=x2
不是一对一映射的;但是这里是满足条件的,因为
DX={x:x=0,1,2,3}
中的
x
不存在负值,即我们有单值的反函数
第二种情况中的变换 g(x) 不是一对一的。虽然不是绝对的,但是对大多数涉及离散随机变量的应用来说, Y 的pmf通过直接的方法就能得到,为此我们给出两个例子。
考虑例3中的几何随机变量,我们玩一个游戏,如果第一次头出现的次数为偶数甲方赢一元,如果是奇数那么甲方输一元,令
考虑另一个例子,令
Z=(X−2)2
,其中
X
是例1的几何随机变量,那么
为了验证其正确性,读者可以试着计算 Z <script type="math/tex" id="MathJax-Element-2666">Z</script>的pmf在其空间上求和等于1。
博文pdf版本下载地址:http://pan.baidu.com/s/1i5OaIUT