tensorflow 模型训练

因为我是android开发,所以用的是MobileNet模型库,linux系统

下载数据flower_photos

打开终端

下载完成后进入tensorflow源码文件夹

$ mkdir flowers

将flower_photos下有图片的文件夹都复制到flowers文件夹,flowers文件夹目录

daisy  dandelion  roses  sunflowers  tulips

开始训练

$ python tensorflow/examples/image_retraining/retrain.py --learning_rate=0.0001 --testing_percentage=20 --validation_percentage=20 --train_batch_size=32 --validation_batch_size=-1  --flip_left_right True --random_scale=30 --random_brightness=30 --eval_step_interval=100 --how_many_training_steps=600 --architecture mobilenet_1.0_224 --image_dir flowers/

会自动下载MobileNet模型库放入/tmp/imagenet内,再加一句--model_dir /xxx设置自己的模型库路径

嫌每次都打这么多代码麻烦到话,就改tensorflow/examples/image_retraining/retrain.py源码,根据标签改参数

生成的output_graph.pb和output_labels.txt文件在/tmp文件夹下

在android studio内使用时只需要改ClassifierActivity.java文件

private static final int INPUT_SIZE = 224;
private static final int IMAGE_MEAN = 128;
private static final float IMAGE_STD = 128;
private static final String INPUT_NAME = "input:0";
private static final String OUTPUT_NAME = "final_result";

private static final String MODEL_FILE = "file:///android_asset/output_graph.pb";
private static final String LABEL_FILE =
        "file:///android_asset/output_labels.txt";
本来想用inception_v3的,可是训练好的库在android端无法使用

本文参考了

MobileNet教程:用TensorFlow搭建在手机上运行的图像分类器






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值