支持向量机(3)

以上两节讨论的都是线性可分的数据集,都是线性不可分的情况,上述模型不能解决。例如有一些离群点,将这些离群点除去后,剩下的大部分数据集是线性可分的。
这里写图片描述
这时线性不可分意味着部分样本点不能满足函数间隔大于等于1的约束条件,则可以对每个样本点加入一个松弛变量 ξi ,使得函数间隔加上松弛变量大于等于1,这样约束条件变为:

yi(wxi+b)+ξi1
,而放松限制条件后,我们需要重新调整目标函数,以对离群点进行处罚,于是目标函数变为
12||w||2+Ci=1Nξi
,C为惩罚参数,一般根据问题确定。加入惩罚项 CNi=1ξi 之后离群点越多,目标函数会变大,所以它使得离群点不至于过多,另外C值越大即对误分类的点惩罚越大,也就是越不希望看到离群点。因此目标函数控制了离群点的数目和程度,使大部分样本点仍然遵守限制条件。则新的模型如下:
minw,b 12||w||2+Ci=1Nξi yi(wxi+b)+ξi1ξi0i=1,2,,N

和上一节类似,以上问题为原始问题,依然可以通过求解对偶问题来求解原始问题。对偶问题的求解步骤依然是:


  • 建立拉格朗日函数
    L(w,b,ξ,α,β)=12||w||2+CNi=1ξiNi=1αi[yi(wxi+b)+ξi1]Ni=1βiξi
  • 对拉格朗日函数求极大极小问题,先看作是变量 w,b 的函数,分别对其求偏导,得到 w,b 的表达式。然后代入拉格朗日函数中,得到一个对 α 求极大。具体推导过程可以参看支持向量机(2)
    这里直接列出最后推导结果:

    minα 12i=1Nj=1Nαiαjyiyj(xixj)i=1Nαii=1Nαiyi=0Cαi0i=1,2,,N

    可以发现,这里的模型与之前线性可分的模型仅仅在条件上多了一个 Cαi ,而且没有了惩罚因子 ξi ,于是我们同样可以求得一个最优解 α=(α1,α2,,αN) ,再根据KKT条件,可以转化为最优 w,b .KKT条件如下:
    wL(w,b,ξ,α,β)=wi=1Nαiyixi=0bL(w,b,ξ,α,β)=i=1Nαiyi=0ξL(w,b,ξ,α,β)=Cαβ=0αi[yi(wxi+b)+ξi1]=0βiξi=0αi0yi(wxi+b)+ξi10βi0ξi0i=1,2,,N

    w=Ni=1αiyixi
    对于 α ,有三种情况:

  • α=0 ,则 β=C>0,ξi=0 ,则 yi(wxi+b)1

  • 0<α<C ,则 β>0,ξi=0yi(wxi+b)+ξi1=0 ,则 yi(wxi+b)=1
  • α=C ,则 yi(wxi+b)+ξi1=0,ξi0 ,则 yi(wxi+b)1

以上表明在两条间隔线外的样本点前面的系数为0,离群样本点前面的系数为C,而支持向量(也就是在超平面两边的最大间隔线上)的样本点前面系数在(0,C)上。通过KKT条件可知,某些在最大间隔线上的样本点也不是支持向量,相反也可能是离群点。
因此若存在 0<αi<C ,则 yi(wxi+b)=1 ,可以求得 b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值