群域环和向量空间是四款代数结构

先来点群域环  ,,后续再来点李群和李代数

A.群  ---凤姐咬你--封结

一,先有集合

群域环和向量空间是四款代数结构,这些结构的基础构建都是集合,就是首先有一帮子东西(元素)凑到一起了,集合成一伙(我们有兴趣去研究或处理它们)。然后,在这个集合之上再加上各款运算,以及特殊的元素(与运算有关),层层加码,就一步一步建设起来了群、环、域和向量空间了(集合+运算)。

二,后有原(始)群  --封 ,,封闭性

加码最少的是群。首先是必须有一个运算(还没有特别指定必须是那种运算,以*表示)。给一个集合加上一个运算后,如果这个集合里的元素经过运算之后,其结果还是这个集合里的一个元素,这个集合就妥妥地有了变身为一个群的基本素质了。

请注意到,这个集合升级为群的第一个台阶不是多几个元素,而是加上了一个运算。加法就是一个运算,乘法也是啊。但这里还没要求,没特指,只是说,如果有这么个运算,但点明了这个运算的结果不能出圈。

这个运算结果还是集合里一个元素的现象叫运算的“封闭性”。这样看,一个集合要能构建出一个群的基本功是它对某个运算必须封闭,运算的结果不能出圈(原集合)。反过来想,就会有一些集合对某些运算不封闭,那就构不成一个群了。但“封闭性”只是一个基本属性,这个“集合+运算”这时还只是一个初级产品,按碱式的说法,它还只是一个“原(始)群”。

用稍微数学一点的表达方式,就是:如果对集合M里的任何元素a,b,若对它们做一个运算*,使c=a*b,若这个运算结果c还是属于M里的一个元素,则这个“集合+运算”(记为(M,*))就构成一个“原(始)群”了。

三,再进一步是半群  --结,,结合律

如果对这个运算再加一个限制条件,比如满足结合律,这个原(始)群就升级了。啥叫满足结合律?就是无论有几个元素参与这个运算,只要参与运算的元素不变,那么,它们参与运算的先后顺序不影响运算的结果。

用比较数学的语句来表达,就是,如果a,b,c都是这个集合里的元素,如果做这个运算,得d=a*(b*c)=(a*b)*c,则这个运算满足结合律。根据四则运算规则,在刮号里的运算先做么。以上等式表示若有几个元素排在一起连续做这个运算,那么,无论把其中哪两个之间的运算先做一下,最终的运算结果都一样。这就是满足结合律。

这个原(始)群的运算在满足封闭性后若又满足了结合律,它就是一个比原(始)群更严谨一点的群了,它有一个名字,叫“半群”。

四,后继有人是幺半群  ---幺元

半群之后再进阶,就是幺半群了。但这个幺半群进阶的法子不靠对运算再设限了,而是靠在集合里必须有一个特别的元素。啥元素?叫单位元(又称中性元),符号e。

这单位元e有啥功能?

就是这个半群里的任何一个元素与这个单位元进行运算,结果还是该元素本身。就是说:若在(M,*)中有了一个元素e,使得对任何一个属于(M,*)的元素a,都有a*e=e*a=a,只要有这玩意,这个半群就可以升级为幺半群了。

我们顺着推一下,如果这个运算*是一个加法运算+,那么这个单位元e就该是一个0;而如果这个运算是一个乘法运算x,这个单位元就该是一个1了吧。

五,再补一记成完整的群   ----逆 这个是对称性。

在原(始)群、半群和幺半群之后,我们再给运算加一个紧箍咒,就是运算必须具有对称性,或者说是可逆性。就是说,如果在这个幺半群中,对元素a,总能在这个幺半群中找到一个元素b,而这个运算能做到使a*b=b*a=e,这个幺半群就可以进阶到一个完整严格的群了。

瞧见没,一个集合,加一个满足四项基本原则的运算,就构成了一个群。

六,特殊分子~阿贝尔群

对于一个群(这里指一个完整严格的群,不再只是一个原始群了),如果对于其中的任何两个元素a,b,都有a*b=b*a,就是说,这个运算是可交换的,这个群就是一个特别的群了,学名就叫可交换群,但又被后人用来怀念群论大师阿贝尔,就又被冠名为阿贝尔群了。

我们把群的进阶总结一下:

1.集合M是群的基础构建;

2.原(始)群:集合M+具备封闭性的运算*;

3.半群:+运算满足结合律;

4.幺半群:+元素里有单位(中性)元。

5.群(完整严格的):+运算满足对称性(可逆性)。

6.阿贝尔群:+运算满足交换律。

关于域环、向量空间,容后学说。

在扯别的内容之前,回过头来再多说几句关于群的运算设定。你看看阿贝尔群的交换性条件和完整群的对称、可逆性条件,两者都有一个a*b=b*a,咋看起来这两厢一样么,都是可交换的,其实不然。对于一般群,说的是对称性或可逆性,这意思就是,如果幺半群里有一个元素a,如果你要成一个完整的群,就必须能找到另外一个与之对称或曰可逆的元素b,不仅要使a*b=b*a,还得使这个“可交换”的运算的结果是e,就是必须有a*b=b*a=e。

这里的这个“可交换”的关系是指两个“对称”的“可逆”的元素之间的关系,而不是元素之间在运算时的普遍关系。并且,对这个运算的结果有一个限定,就是必须等于e。

你看啊,在这里,如果这是一个加法运算,则对于任何一个a,就必然有一个-a与之配对,使得a+(-a)=0(加法运算时的e=0),这个a与-a是关于0点对称的,对吧?这也可称为“可逆”的,就是无论你这个a取的多牛皮,我总能找到一个-a,一巴掌逆袭,把你打回原形,全归于0,啥都没有了。

而对于乘法运算,则是无论你的a取啥(除了零元吧),我都有一个元素1/a,使得a*1/a=1(对乘法运算,e=1)。

这个a*b=b*a=e讲的是两个元素的配对,运算得e。而在阿贝尔群的条件里,对a*b=b*a的可交换性则是普适的,就是这个群里的所有元素之间的运算都必须能满足可交换性,这样,一个群才能特化为阿贝尔群。当然,它不要求运算的结果得到e。

B.环

现在扯

群是一种代数结构,环也是,而且环是搭建在群上的,准确地说,环是搭建在阿贝尔群之上的。之前说群时,我们已经看到,群是在集合上加了一个运算,以及与运算和元素有关的4四项基本规则。可谓1+1+4,一个“实体”,一个运算,4项规则,构成一个群。在此之上再加规则,就出来一个阿贝尔群,一个特殊的群。

那么,要搭成一个环需要加啥么?要的,但这回不是加元素,也不是加规则,是加一个运算。原来在群里只有一个运算,与集合凑在一起是一个1+1的结构,是一个实体+一个运算,当然,运算还必须满足一系列的规则,这个不变。现在要做的则是再加上一个运算,成为1+2的结构了,简洁的记法是(M,+,×)。

本来群运算并没有特指是哪个运算,这次也没,只是说两个运算不一样。我们知道,基本上只有两个普世的运算啦,一个加法+,一个乘法×。加法最基本,群构造里不可或缺的运算应该是+啦,这个新加到就是×了。

不过,环对这两个运算的限制条件是不一样的。环是构造在阿贝尔群之上的,对原有的运算限制当然是全套保留的,但对新加的运算就宽松很多。对于新加的这个运算,从原来的4项规则里,只要求它具备封闭性和满足结合律。

另外,如果在两个运算混合进行时,要求新的运算对原有的群运算可分配,而且是左右都可以分配的。比如元素a,b,c做新老混合运算,a×(b+c),按四则运算法则,就必须是b+c这个老群运算先做了,在做新×运算。但对新运算的一个规矩就是,你的满足分配律,就是必须有a×(b+c)=(a×b)+(a×c)的结果。而且,这个对分配率的满足还必须是左右都适用的,就是(a+b)×c=(a×c)+(b×c)也得行。

就这样,在阿贝尔(交换)群上加了一个运算,这个运算又能遵守原有运算的前两个规则(不必守后面的规则),在与原有运算一起干活时又左右都满足分配律,满足这些条件后,一个被称为“环”的代数结构就搭建起来了

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值