彻底理解相似矩阵

本文详细介绍了相似矩阵的概念,通过线性变换和基的转换来阐述其定义。相似矩阵源于不同的有序基下,相同线性变换的不同矩阵表示。通过变换矩阵P,可以将向量在不同基下的表示相互转换,并揭示了线性变换在坐标变换中的作用。最终得出结论,P^-1EP=U,形成了相似矩阵的基础关系。这一过程有助于深入理解线性代数中的这一重要概念。
摘要由CSDN通过智能技术生成

大家都知道相似矩阵的定义:

 看着只是感觉有巧妙之处,但其实我们并不能理解这背后的道理,以及知道它的由来是什么。

今天受知乎“马同学”一篇回答的启发,并结合一本说人话的线代教材中的内容明白了不少,决定来讲讲,并在它的基础上做一些进一步的总结。

首先那本说人话的教材是这样解释的:

相同的线性变换选用不同的有序基该变换有不同的矩阵表示

                                                                                       ——《华章数学译丛-线性代数原书》

这两个矩阵就称为相似矩阵。

是不是醍醐灌顶?

但还是要细致地进一步了解才能完全掌握它的内容

下面让我娓娓道来

设有两组基:V1 V2  (V1 V2 是两个矩阵,其内容为两组基在标准正交基中的描述)

以及向量v1、v2,它们分别是一向量v在V1、V2中的描述,存在变换矩阵 P使得 P*v1=v2(这里花一点篇幅补充下有关线性变换的内容,虽然它的作用很好理解,但实际用起它的数学式子来处理问题有时还是挺抽象的(熟练掌握了的可以跳过)

要厘清使向量发生空间位置的变化和更换基向量来描述向量的关系:

可以用几句话说明白:

有变换矩阵A,和两个向量x1x2

它们存在关系:  Ax1=x2

无论是“使向量发生空间位置的变化:还是“更换基向量来描述同一个向量”都用到这个表达式,

不同的作用有不同的对此式子的理解,

若是第一种,则简单明了:线性算子A使x1变换为x2

x1x2都在同用同样的基向量来描述)A可称为x1x2的转移矩阵

第二种,想要掌握有些复杂,但经过思考整理可总结为简单的两句话:

Ax1=x2中的A是x1所在的坐标系中基向量在  x2所在的坐标系中的描述

不同的语言转换需要向量左乘A或A的逆

记住这句话就能轻松驾驭线性变换这个神奇的工具了。

引申:两种作用之间有什么联系吗?

我的回答是:目前在我知识范围内没有,但它们结合起来,构成了相似矩阵的由来)

继续上文,设向量v1、v2分别是同一向量v在V1、V2中的描述,存在变换矩阵 P使得 P*v1=v2

好了,正戏开始:

开头说到的线性变换要上场了,对它的理解在这个概念的学习中至关重要

有两个矩阵U、E(它的意义待会揭露)

总的来说就是经过几个算式演化出来的,

首先有v2=P*v1

然后取上式右端,左乘E

得EPv1

再左乘P的逆,得

P^(-1)EPv1

令Uv1等于上式:

P^(-1)EPv1=Uv1

便得到相似矩阵的定义

P^(-1)EP=U

我们来看看这个过程中发生了什么

首先揭晓U、E的含义:将用基V1和V2描述的向量v进行线性变换的矩阵,因为v在不同的坐标系中描述不同,故须不同的矩阵才能达到同样的变换

第一步v2=P*v1,v由在V1中表述换为在V2中

第二步EPv1,在V2下将向量v进行计划的线性变换,得到的新向量是在V2下表述的

第三步P^(-1)EPv1,将在V2下表述的新向量转化为在V1下表述(灵活运用Ax1=x2两个作用)

第四步就好理解了,上面三步等价于直接将在V1下表述的向量v进行该线性变换,得到在V1表述下的新向量。

进行上面四步(一个空间位置确定的向量进行线性变换,在用不同的基(坐标系)下进行就会有不同的变换矩阵)它们满足那个关系式。

这就是相似矩阵的由来,谢谢大家阅读。希望能帮助到大家。

 

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值