t-SNE algorithm(t-分布邻域嵌入算法)

参考 http://qiancy.com/2016/11/12/sne-tsne/

数据降维,大体分为线性方法和非线性方法。其中线性方法例如PCA和LDA,而非线性方法又有保留局部特征、基于全局特征等方法。有人整理了一张分类图,下面这张图从网上引用而来:

相比于其他降维方法,t-SNE是近年比较火热的一种高维数据可视化技术,能够通过降维,将高维数据降维并给出二维或三维的坐标点,从而可以在人能够轻易理解的平面或立体空间内将数据可视化出来。

这个方法是SNE的变种,SNE是Hinton在2002年提出来的方法。Stochastic Neighbor Embedding,好吧,又是embedding。目标是将高维数据映射到低维后,尽量保持数据点之间的空间结构,这样在高维空间里距离较远的点,在低维空间中依然保持较远的距离。在传统的方法中,PCA和MDS是线性技术,用于保持相距较远的数据点之间的低维表示。

Maaten将t-SNE的降维结果与其他7种降维方法的结果,在5种不同的数据集中作了对比。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值