哈佛DEG课程--1.差异分析的设置和概述

本文介绍了使用R进行RNA-seq差异基因表达(DGE)分析的过程,包括实验目标、工作流程、数据加载、DESeq2包的应用,以及为何选择负二项分布作为计数数据的模型。课程详细讲解了如何设置项目、检查数据、处理重复和测序深度,以及DESeq2在差异表达分析中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

哈佛DEG课程--1.差异分析的设置和概述

小洁忘了怎么分身已关注

32019.05.13 14:55:30字数 4,161阅读 1,496

https://hbctraining.github.io/DGE_workshop/lessons/01_DGE_setup_and_overview.html
(今天状态不佳,加上统计学基础不怎么样,如有错误请指出,我将在简书中更新)

学习目标

  • 解释实验及其目标
  • 描述如何在R中设置RNA-seq项目
  • 描述RNA-seq和差异基因表达分析工作流程
  • 解释为什么负二项分布用于模拟RNA-seq计数数据

差异基因表达(DGE)分析概述

RNA-seq的目标通常是进行差异表达检测,以确定哪些基因在不同条件间表达量有差异。这些基因可以从生物学角度揭示不同条件下受影响的生物过程

RNA-seq工作流程的详细步骤如下图,可用于确定基因的表达水平。通过生成每个基因的read counts,在命令行(Linux / Unix)上执行所有步骤。

差异表达分析和其他下游功能分析通常用R中的专门的程序包完成,这些R包是为完成差异分析所需的复杂统计分析而设计的。

image

在接下来的几节课中,我们将引导你使用各种R包进行end-to-end的基因水平RNA-seq差异表达工作流程。我们将从计数矩阵开始,进行质控的探索性数据分析,探索样本之间的关系,进行差异表达分析,并在执行下游功能分析之前直观地探索结果。

1.检查示例数据集

示例数据集是RNA-Seq的完整计数矩阵,是Kenny PJ et al,Cell Rep 2014(http://www.ncbi.nlm.nih.gov/pubmed/25464849)描述的更大研究的一部分。

RNA-Seq实验对象是HEK293F细胞,所述HEK293F细胞用MOV10转基因或siRNA转染以降低Mov10表达,或非特异性(无关)siRNA转染。这导致了3种情况:Mov10 oe(过表达),Mov10 kd(击倒)和不相关的kd。重复次数如下所示。

使用这些数据,我们将评估与MOV10表达的扰动相关的转录模式。请注意,不相关的siRNA作为对照组。

image

这些数据集的目的是什么?Mov10做了什么?

作者正在研究脆性X综合征中涉及的各种基因之间的相互作用,这是一种FMRP蛋白异常产生的疾病。

FMRP “最常见于大脑,对正常的认知发育和女性生殖功能至关重要。该基因的突变可导致脆性X综合征,精神发育迟滞,卵巢早衰,自闭症,帕金森病,发育迟缓和其他认知缺陷。“ - 来自维基百科

MOV10是推定的RNA解旋酶,其在microRNA途径的背景下也与FMRP相关。

论文正在测试的假说是FMRP和MOV10结合并调节RNA子集的翻译。

image

问题:

  • 可以通过MOV10的丢失或获得来识别哪些表达模式?
  • 两种情况之间是否有共同的基因?

2.组织工作目录

在深入了解分析的细节之前,先打开RStudio并为此分析设置一个新项目。

  1. 转到File菜单并选择New Project
  2. 在<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值