Vapnik-Chervonenkis dimension

source from: https://www.autonlab.org/_media/tutorials/vcdim08.pdf

定义

VC维是用来反映函数集学习能力的大小。

这里写图片描述

这里写图片描述

上面的讲义直接给出了VC维的定义。为了更形象地了解VC维的含义,还需要以下定义

Shattering

这里写图片描述

通俗点说,分散就是任意给定一个集合 X=x1,x2,...,xr ,设计的分类器能够正确地将其分类。

VC维就定义为分类器能够分散的最多数量的点。

例子

VC dimension = 2

这里写图片描述

VC dimension = 1

这里写图片描述

用处

可以用于模型选择

这里写图片描述

上图展示了一个结论,并不是VC维越高就越好,VC维越高,模型越复杂,同时泛化误差越大。

这里写图片描述

替代方法

在Slide里面给出了三种替代VC维进行模型选择的方法

Cross-validation

这里写图片描述

Akaike Information Criterion

这里写图片描述

Bayesian Information Criterion

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值