详解寄存器模型reg_model的auto_predict

什么是reg_model镜像值?

DUT的配置寄存器的值是实际值,reg_model有镜像值、期望值的概念。

镜像值:存放我们认为此时DUT里寄存器的实际值。

期望值:存放我们期望DUT寄存器被赋予的值。

什么是auto predict?

那么怎么更新reg_model里面的镜像值呢?有三种方式更新reg_model里面的镜像值。

方式1:reg_model调用自己的auto predict

举个例子,如下图,model.regA.write(47),通过regA找到对应的uvm_reg_item,然后找到address_map里面对应的地址,用adapter完成转换得到bus_item并给到sequencer。然后通过driver的读写完成reg_model寄存器的镜像值刷新。

在寄存器模型创建的组件的connect_phase()调用寄存器模型中的uvm_reg_map的set_auto_predict(on)来选择打开(on=1)或关闭(on=0)自动预测功能,默认关闭。

景芯SoC验证项目采用的就是auto_predict,如下图,在SoC_subsys_env.sv里面connect_phase阶段写一句regmodel.default_map.set_auto_predict(1)即可。默认是关闭的。

自动预测打开的优点在于我们UVM环境实现起来会比较简单,工作量大大降低,缺点是无法predict寄存器模型之外的总线行为(例如sequence),因而不能保证寄存器模型与DUT的实时匹配。

方式2:关闭自动预测功能并实例化uvm_reg_predictor

如果关闭自动预测功能,那么我们需要将uvm_reg_predictor实例化(或者继承一个我们自己的predictor),将predictor实例与我们monitor相连接(这里还需要我们monitor能够正确抓去总线数据),这样predictor就会实时的获取monitor所监测到的transaction信息,通过transaction中提供的address信息与uvm_reg_map中的寄存器address进行匹配进而发起相应的uvm_reg的predict()行为。

这样一来uvm_reg的predict行为就跟寄存器模型中的读写行为脱钩了,只是跟monitor上的行为想关联,即使不是寄存器模型发起的读写(例如通过一般的sequence发起的总线读写),也是可以实时的更新寄存器模型中的镜像值和期望值,这样做更能保证寄存器模型中的值与DUT中的寄存器值最大程度的保持一致。

方式3:reg_model被动实例化uvm_reg_predictor

reg_model不做寄存器配置,仅作为被动检测,由bus agent的monitor来获取DUT的寄存器配置值,经过adapter转为为address和data,address从map关系中找到对应的register,然后把data通过uvm_reg_item返回给reg_model。

我们需要在寄存器模型创建的组件的connect_phase()调用寄存器模型中的uvm_reg_map的set_auto_predict(on)来选择打开(on=1)或关闭(on=0)自动预测功能,默认关闭。

自动预测打开的优点在于我们UVM环境实现起来会比较简单,工作量大大降低,缺点是无法predict寄存器模型之外的总线行为(例如sequence),因而不能保证寄存器模型与DUT的实时匹配。

关闭自动预测我们就需要实例化uvm_reg_predictor,并将uvm_reg_predictor实例中的bus_in与我们的uvm_monitor中的uvm_analysis_port相连接,这就需要我们保证uvm_monitor实现必须完善,这样就可以保证我们寄存器模型与DUT中的寄存器值最大可能的保持一致性。

引用:ModuleNotFoundError: No module named 'predict_model'错误消息表示在运行代码时找不到名为'predict_model'的模块。可能是因为我们在代码中使用了'predict_model'模块,但它并未被正确安装或导入。解决这个错误的方法如下[^1]: 1. 检查模块是否已安装:首先,我们需要确认'predict_model'模块是否已经安装在我们的Python环境中。可以使用以下命令来检查模块是否已安装: ```shell pip show predict_model ``` 如果模块已安装,将显示模块的详细信息。如果模块未安装,将显示"WARNING: Package(s) not found"的提示信息。 2. 使用pip安装模块:如果模块未安装,我们可以使用pip命令来安装它。可以使用以下命令来安装'predict_model'模块: ```shell pip install predict_model ``` 这将从Python Package Index(PyPI)上下载并安装'predict_model'模块。 3. 检查Python环境和路径:有时,模块无法被正确导入是因为Python环境或路径配置不正确。我们可以检查Python环境和路径是否正确设置,并确保模块所在的目录在Python的搜索路径中。 4. 检查名称冲突和导入语句:如果我们在代码中使用了与其他模块或变量同名的'predict_model',可能会导致模块无法正确导入。我们需要检查代码中的名称冲突,并确保导入语句正确。 5. 使用虚拟环境:如果我们在使用虚拟环境(virtual environment),可能是因为虚拟环境中没有安装'predict_model'模块。我们需要激活虚拟环境,并在其中安装所需的模块。 希望以上方法能帮助您解决ModuleNotFoundError: No module named 'predict_model'错误。如果问题仍然存在,请提供更多的信息,以便我们能够更好地帮助您解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值