1、pytorch分布式数据训练结合学习率周期及混合精度


正如标题所写,我们正常的普通训练都是单机单卡或单机多卡。而往往一个高精度的模型需要训练时间很长,所以DDP分布式数据并行和混合精度可以加速模型训练。混精可以增大batch size.

如下提供示例代码,经过官网查阅验证的。原始代码由百度文心一言提供。
问题:pytorch 分布式数据并行与学习率周期和混合精度训练的示例代码
该问题分别问了(当前2023年10月16日)百度文心一言,google bard,科大讯飞星火,chatgpt4,bing。目前看来只有文心给出最接近正确答案。当前版本 pythorch 2.0.1。关于混精 torch.cuda.amp.autocast(args...)`` is equivalent to ``torch.autocast("cuda", args...),混精可以参考:

  • https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html?highlight=torch%20cuda%20amp%20autocast
  • https://pytorch.org/docs/stable/amp.html#gradient-scaling

1、SPAWN方式

在使用这些助手(都是免费的)时,发现对于不同问题,各自的优劣不同,所以可以都试一下。
在PyTorch中,分布式数据并行(Distributed Data Parallel,DDP)可以在多个GPU上并行训练模型,提高训练速度。学习率周期(Learning Rate Schedules)用于调整训练过程中学习率的变化,而混合精度训练则可以提高训练速度并减少内存使用。
以下是一个使用PyTorch的分布式数据并行、学习率周期和混合精度训练的示例代码:

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import ExponentialLR, CosineAnnealingLR
from torch.cuda.amp import GradScaler, autocast



def setup(rank, world_size):
    """
    Args:
        rank: Unique identifier of each process
        world_size: Total number of processes
    """
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12355'

    # initialize the process group
    dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
    torch.cuda.set_device(rank)

def cleanup():
    dist.destroy_process_group()
# 定义模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 10)

    def forward(self, x):
        return self.fc(x)

# 训练函数
def train(rank, world_size):
    print(f"Running basic DDP example on rank {rank}.")
    gpu=rank
    setup(rank=rank,world_size=world_size,)
    torch.manual_seed(0)
    model = SimpleModel().cuda(gpu)
    ddp_model = DDP(model, device_ids=[gpu])

    # 使用混合精度训练
    scaler = GradScaler()
    optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)

    # 使用学习率周期
    scheduler1 = ExponentialLR(optimizer, gamma=0.9)
    scheduler2 = CosineAnnealingLR(optimizer, T_max=50, eta_min=0)

    # 模拟数据
    data = torch.randn(32, 10).to(gpu)
    target = torch.randn(32, 10).to(gpu)

    for epoch in range(100):
        optimizer.zero_grad()
        with autocast():  # 启用混合精度训练
            output = ddp_model(data)
            loss = nn.MSELoss()(output, target)
        scaler.scale(loss).backward()  # 使用scaler进行梯度缩放
        scaler.step(optimizer)  # 更新参数
        scaler.update()  # 更新GradScaler状态
        scheduler1.step()  # 使用ExponentialLR调整学习率
        scheduler2.step()  # 使用CosineAnnealingLR调整学习率
        print(f"Rank {rank}, Epoch {epoch}, Loss {loss.item()}")
    #模型保存
    #如是是多gpu训练保存时需要使用model.module
    #model.module if is_parallel(model) else model
    cleanup()
if __name__ == "__main__":
    world_size = torch.cuda.device_count()  # 获取可用GPU的数量
    mp.spawn(train, args=(world_size,), nprocs=world_size, join=True)  # 在每个GPU上运行train函数


这个示例代码在每个GPU上并行训练一个简单的线性模型。每个进程(即每个GPU)都有自己的模型副本,并且每个进程都独立计算梯度。然后,所有进程都会聚集他们的梯度并平均,然后用于一次总体参数更新。这个过程会根据学习率周期来调整每个epoch后的学习率

本部分参考官方的:https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html?highlight=torch%20multiprocessing 是写单GPU和多GPU的区别。

2、torchrun 方式

首先是写一个ddp.py,内容如下:

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import ExponentialLR, CosineAnnealingLR
from torch.cuda.amp import GradScaler, autocast

    
# 定义模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 10)

    def forward(self, x):
        return self.fc(x)

# 训练函数
def train():
    dist.init_process_group("nccl")
    rank = dist.get_rank()
    print(f"Start running basic DDP example on rank {rank}.")
    gpu = rank %  torch.cuda.device_count()
    torch.manual_seed(0)
    model = SimpleModel().to(gpu)
    ddp_model = DDP(model, device_ids=[gpu])

    # 使用混合精度训练
    scaler = GradScaler()
    optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)

    # 使用学习率周期
    scheduler1 = ExponentialLR(optimizer, gamma=0.9)
    scheduler2 = CosineAnnealingLR(optimizer, T_max=50, eta_min=0)

    # 模拟数据
    data = torch.randn(32, 10).to(gpu)
    target = torch.randn(32, 10).to(gpu)

    for epoch in range(100):
        optimizer.zero_grad()
        with autocast():  # 启用混合精度训练
            output = ddp_model(data)
            loss = nn.MSELoss()(output, target)
        scaler.scale(loss).backward()  # 使用scaler进行梯度缩放
        scaler.step(optimizer)  # 更新参数
        scaler.update()  # 更新GradScaler状态
        scheduler1.step()  # 使用ExponentialLR调整学习率
        scheduler2.step()  # 使用CosineAnnealingLR调整学习率
        print(f"Rank {rank}, Epoch {epoch}, Loss {loss.item()}")
    dist.destroy_process_group()
if __name__ == "__main__":
    train()

单机多卡,执行:

torchrun --nproc_per_node=4 --standalone ddp.py

如果是多机多卡:

torchrun --nnodes=2 --nproc_per_node=8 --rdzv_id=100 --rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR:29400 elastic_ddp.py

本部分参考:
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#save-and-load-checkpoints
其它参考:https://github.com/lyuwenyu/RT-DETR/tree/main 可以看到pytorch的训练低层方法。
https://github.com/huggingface/pytorch-image-models 这个也有

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值