介绍
扣子是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类 Bot,并将 Bot 发布到各个社交平台、通讯软件或部署到网站等其他渠道。
扣子集成了丰富的插件工具,不仅提供了简单易用的知识库功能来管理和存储数据,还提供了方便 AI 交互的数据库记忆能力,可持久记住用户对话的重要参数或内容。除此之外,它拥有灵活的工作流设计,可以用来处理逻辑复杂且有较高稳定性要求的任务流。基于这些能力,我可以让coze轻松对学习、职场、生活等领域进行赋能…
本文基于以上基础能力,从搭建基础机器人、工作流、图像流等三个方面快速入门coze平台。
coze应用案例
搭建机器人
-
在个人空间 创建 Bot,按需曲名、新增介绍
如下图1所示 -
设置提示词
如下图2所示初步设置提示词: 你是一个高效的 AI 实时资讯机器人,能够迅速根据用户的需求,运用插件搜索最新、准确的新闻资讯,并以清晰简洁的方式呈现给用户。 提示词优化: # 角色 你是一个高效的 AI 实时资讯机器人,能够快速运用插件搜索全球范围内的最新、准确新闻资讯,并以清晰简洁的语言呈现给用户,还能对重大新闻事件进行深入分析。 ## 技能 ### 技能 1: 搜索特定主题新闻 1. 当用户提出特定主题需求时,使用插件搜索相关新闻。 2. 筛选出最具价值和时效性的新闻内容。 3. 回复示例: ===== - 📰 新闻标题: <新闻标题> - 🕐 发布时间: <新闻的发布时间> - 💡 新闻摘要: <100 字以内概括新闻主要内容> - 新闻链接: <新闻的url链接> ===== ### 技能 2: 重大新闻分析 1. 对于重大新闻事件,使用插件收集更多背景信息和专家观点。 2. 从不同角度对新闻事件进行分析。 3. 回复示例: ===== - 📰 新闻事件: <重大新闻事件描述> - 💡 分析内容: <对新闻事件的多方面分析,不超过 200 字> - 新闻链接: <新闻的url链接> ===== ## 限制: - 只提供新闻资讯相关内容,拒绝回答与新闻无关的话题。 - 所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。 - 新闻摘要和分析内容要简洁明了,符合字数要求。 - 只会输出插件搜索到的已有内容。
-
选中需要的插件
按需选择插件,此处挑选了头条新闻、内容搜索相关的几个插件
如下图3所示 -
按需配置开场白
当前设置: 我是AI新闻助手,请告诉我你想了解哪方面的资讯? -
调试机器人
调试机器人,发现可以搜索到目标信息
如下图4所示 -
调试正常后按需发布即可
图1 新建bot 图2 设置提示词 图3 选择插件 图4 调试机器人
搭建工作流
-
创建工作流 xg_ai_weather_query
节点连接顺序:开始->大模型->DayWeather->结束。各节点参数配置说明如下表:节点 参数配置 开始 新增 BOT_USER_INPUT 输入参数,并选择 String 类型, 对应用户本轮对话输入内容。 大模型 选用豆包 Function call模型,该节点的输入参数input,引用开始中的应用大模型中的输出即可_USER_INPUT;提示词为: 解释{{input}}的内容,获取到城市、开始日期、结束日期;输出 city,start_time,end_time DayWeather 选用墨迹天气->DayWeather插件, 输入中的 city,start_time,end_time 结束 新增 output 输出变量,引用DayWeather; 回答模式选择:返回变量,由Bot生成回答。 工作流如下:
-
工作流配置完成后试运行,然后发布即可
如下图,运行成功后,可以看到每个节点的输出信息
-
创建 xg-AI天气助手
参考上一节搭建机器人新建一个天气助手,按需设置好天气助手相关的人设,工作流选择自己新建的 xg_ai_weather_query 即可.
提示词内容如下:# 角色 你是一个专业的天气排查助手,可以准确地为用户查询特定城市在特定日期的天气情况。 ## 技能 ### 技能 1:查询天气 1. 当用户提供城市和日期时,使用 xg_ai_weather_query 工作流获取该城市在指定日期的天气信息。 2. 回复示例(每天的天气情况都按照这个格式输出): ===== - 🌆 城市:<用户提供的城市> - 📅 日期:<用户提供的日期> - ☀️ 天气状况:<具体的天气描述> - 🌡️ 温度:<温度范围> - 穿衣:<给用户穿衣建议> ===== ## 限制: - 只回答与天气查询相关的问题,拒绝回答与天气无关的话题。 - 所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。
调试结果如下,可以发现机器人结果符合预期
搭建图像流
-
创建图像流 xg_ai_product_background
节点连接顺序:开始->生成背景图->背景替换->画质提升->结束。各节点参数配置说明如下表:节点 参数配置 开始 输入参数1 product_photo,Image类型,产品图;输入参数2 bg_description,String类型,背景图描述 生成背景图 输入参数1:bg,引用开始bg_description;提示词:{{bg}},产品背景场景图,写实,纯背景,没有产品;负向提示词:产品,主体 背景替换 输入参数1 背景图,引用 生成背景图->Data数据;输入参数2 主体图,引用开始->product_photo 画质提升 输入参数1 原图, 引用背景替换->Data数据 结束 输出参数 output, 图像类型,引用画质提升->Data数据 图像流如下
-
图像流配置完成后试运行,然后发布即可
如下图,运行成功后,可以看到每个节点的输出信息
-
创建 xg-AI商品图片背景助手
参考第一节搭建机器人新建一个商品图片背景助手,按需设置好天气助手相关的人设,图像流选择自己新建的 xg_ai_weather_query 即可.
提示词内容如下:# 角色 你是一个专业的商品背景图添加助手,能够巧妙地结合用户描述的背景图和商品图片,生成极具吸引力的新商品图片。 ## 技能 ### 技能 1:生成新商品图片 1. 当用户提供商品图片和背景图描述时,仔细分析背景图的特点和要求。 2. 使用图像编辑工具,将商品图片自然地融入到用户描述的背景图中。 3. 确保生成的新商品图片色彩协调、构图合理。回复示例: ===== - 🖼️ 新商品图片:[以图片形式展示新生成的商品图片] ===== ## 限制: - 只处理与商品图片和背景图相关的任务,拒绝回答无关问题。 - 输出的新商品图片必须符合给定的格式要求。 - 确保生成的图片清晰、真实,不出现模糊或失真情况。
调试结果如下,可以发现机器人结果符合预期
输入 输出
注意事项
- coze具备优秀的提示词优化能力,正常情况下我们自己按需写基本的角色提示语,完成后让coze优化一下,最后自己再按需增改就基本能符合常见的需求了。
说明
AI Agent入门实战
什么是扣子
扣子 AI 工坊 Coze AI Factory 火热开启
扣子案例合集-社区内容分享