【论文笔记】 | Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering

该论文提出了一种新的多跳问答方法,利用递归神经网络在Wikipedia图上检索推理路径。模型由检索器和阅读器组成,检索器学习在图中顺序检索相关段落,阅读器则从中提取答案。实验证明,该模型在三个开放领域问答数据集上取得了SOTA结果,展示了解决复杂问题的有效性和鲁棒性。
摘要由CSDN通过智能技术生成

在这里插入图片描述


作者:迪

单位:燕山大学


论文地址

代码地址

论文来源:ICLR2020


前言

  开放领域问答指的是从庞大的数据中找到问题的答案。过去的方法大都是先从这海量的数据中抽取出相关的少量文档,然后将之当做一个给定文本的问答类型。尽管这种方法对单跳问答(sigle-hop QA)效果很好,但是在多跳问答(multi-hop QA)中却往往不那么奏效。单跳问答,就是问题的答案就在单个文档中,而多跳问答需要结合很多篇文档的“知识推理”才能得到最终的答案。如下图所示:
在这里插入图片描述

概述

  回答多跳推理的问题,需要检索多个相关文档,其中一个或几个文档通常与问题几乎没有词汇或语义关系。 本文介绍了一种新的基于图的递归检索方法,该方法学习如何在Wikipedia图上检索推理路径,以进行多跳问答。该模型由检索器和阅读器组成。检索器模型训练一个递归神经网络,该神经网络学习在推理路径中顺序检索相关段落。 阅读器模型对推理路径进行排序,并提取最佳推理路径中包含的答案范围。 实验结果显示了该模型三个开放域QA数据集均达到了SOTA,展示了该方法的有效性和鲁棒性。

  该方法使用Wikipedia超链接和文档结构构造Wikipedia段落图,以对段落之间的关系进行建模。检索器通过最大化在每个步骤中选择正确的相关段落的可能性并微调段落编码,训练循环神经网络在该图中为推理路径评分。阅读器模型根据其包含和提取正确答案短语的可能性为每个推理路径评分。

主要贡献

  1. 作者介绍了一种新的基于图的循环检索方法,该方法学习检索相关文档作为回答复杂问题的推理路径。
  2. 在三个开放领域的问答数据集中,作者都达到了SOTA的效果,在HotpotQA中,相比于之前最佳的模型高出14个百分点以上。

模型

  首先,检索器根据维基百科的段落得到若干推理路径,然后一个阅读理解模型基于这些路径找到最可能的一条路径作为最终的答案。本文用维基百科文章里的每个段落 p p p作为基本单元,给定问题 q q q,模型首先找到一条路径 E = [ p 1 , p 2 … , p k ] E=[p_1,p_2…,p_k] E=[p1,p2,pk],用 S r e t r ( q , E ) S_{retr}(q,E) Sretr(

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值