【论文阅读】Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering

该研究提出了一种在维基百科图上检索推理路径的方法,用于多轮问答任务。模型由推理路径提取器和阅读器组成,利用RNN建模超链接关系找到最佳路径,并通过Bert模型进行答案抽取。数据增强和负采样策略增强了模型的鲁棒性。在HotpotQA等数据集上表现出优异性能,证明了路径抽取和阅读理解的有效性。
摘要由CSDN通过智能技术生成

Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering

论文:https://arxiv.org/abs/1911.10470

代码:https://github.com/AkariAsai/learning_to_retrieve_reasoning_paths

学习在维基百科中检索问题的推理路径

  • 基于推理路径

任务

从维基百科中提取推理路径实现多轮问答。

  • 多轮问答:

    需要结合多篇文档的“知识推理”能得到最终答案。

    image-20201208143543082

    image-20201208143556977

方法(模型)

  1. 通过维基百科的超链接构建一个维基百科图网络,在不同的文档之间建模。
  2. 使用一个RNN给推理路径建模,从而找到最佳推理路径。

模型结构:

由一个提取器和阅读器组成

image-20201208143829008

推理路径提取器(Reasoning Path Retrieval):根据维基百科之间的超链接关系得到若干推理路径。

阅读理解答案抽取器(Reading and Answering Reasoning Path):基于这些路径找到最可能的一条路径作为最终的答案。

将维基百科文章里的每个段落 p p p作为基本单元。给定问题 q q q,模型首先找到一条推理路径 E = [ p i , . . . , p k ] E = [p_i, . . . , p_k] E=[pi,...,pk],用 S r e t r ( q , E ) S_{retr}(q, E) Sretr(q,E)表示;然后在 E E E中找到答案 a a a,用 S r e a d ( q , E , a ) S_{read}(q, E, a) Sread(q,E,a)表示。

a r g   m a x E , a   S ( q , E , a )      s . t .    S ( q , E , a ) = S r e t r ( q , E ) + S r e a d ( q , E , a ) \underset{E,a}{arg \ max} \ S(q, E, a) \ \ \ \ s.t. \ \ S(q, E, a) = S_{retr}(q, E) + S_{read}(q, E, a) E,aarg max S(q,E,a)    s.t.  S(q,E,a)=Sretr(q,E)+Sread

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没有胡子的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值