柯西积分判别法
@(微积分)
设函数f(x)在 [1,+∞) 单调下降并且非负,则级数:
∑+∞n=1f(n) 与广义积分 ∫+∞1f(x)dx 同收敛或者同发散。
证明:如果广义积分收敛,则级数 ∑+∞n=2(F(n)−F(n−1)) 也收敛。因为:
f(n)≤∫nn−1f(x)dx=F(n)−F(n−1),n=2,3,...,
积分中值定理。
则: ∑+∞n=1f(n) 收敛。
另一方面,如果广义积分发散,那么计数
∑+∞1(F(n+1)−F(n))
发散。
因为
f(n)≥∫n+1nf(x)dx=F(n+1)−F(n),n=2,3,...,
所以级数 ∑+∞n=1f(n) 发散。
注:f(x)必须是单调递减函数。这是无穷级数收敛发散判定的前提,否则直接可以说发散,不必讨论的。