柯西积分判别法

柯西积分判别法是判断无穷级数和广义积分收敛性的重要工具。当函数f(x)在[1,+∞)单调下降且非负时,级数∑+∞n=1f(n)与广义积分∫+∞1f(x)dx同步收敛或发散。利用积分中值定理,可以证明若广义积分收敛,级数∑+∞n=2(F(n)−F(n−1))也收敛;反之,若广义积分发散,级数∑+∞n=1f(n)发散。注意,f(x)的单调递减性是前提条件。" 123478809,12516303,Markdown中数学公式的写作指南,"['算法', 'Markdown语法', '数学表达式']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

柯西积分判别法

@(微积分)

设函数f(x)在 [1,+) 单调下降并且非负,则级数:

+n=1f(n) 与广义积分 +1f(x)dx 同收敛或者同发散。

证明:如果广义积分收敛,则级数 +n=2(F(n)F(n1)) 也收敛。因为:

f(n)nn1f(x)dx=F(n)F(n1),n=2,3,...,
积分中值定理。

则: +n=1f(n) 收敛。

另一方面,如果广义积分发散,那么计数 +1(F(n+1)F(n)) 发散。
因为

f(n)n+1nf(x)dx=F(n+1)F(n),n=2,3,...,

所以级数 +n=1f(n) 发散。

注:f(x)必须是单调递减函数。这是无穷级数收敛发散判定的前提,否则直接可以说发散,不必讨论的。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值