定理 12.8 (柯西判别法, 或称根式判别法)
设 ∑ u n \sum u_{n} ∑un 为正项级数, 且存在某正数 N 0 N_{0} N0及正常数 l l l,
- (i) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
u n n ⩽ l < 1 , ( 11 ) \sqrt[n]{u_{n}} \leqslant l<1, \quad\quad(11) nun⩽l<1,(11)
则级数 ∑ u n \sum u_{n} ∑un 收敛; - (ii) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
u n n ⩾ 1 , ( 12 ) \sqrt[n]{u_{n}} \geqslant 1, \quad\quad(12) nun⩾1,(12)
则级数 ∑ u n \sum u_{n} ∑un 发散.
证
由(11)式有
u n ⩽ l n . u_{n} \leqslant l^{n} . un⩽ln.
因为等比级数 ∑ l n \sum l^{n} ∑ln 当 0 < l < 1 0<l<1 0<l<1 时收敛, 故由比较原则, 这时级数 ∑ u n \sum u_{n} ∑un 也收敛, 对于情形 (ii), 由 (12) 式可推得
u n ⩾ 1 n = 1. u_{n} \geqslant 1^{n}=1 . un⩾1n=1.
当 n → ∞ n \rightarrow \infty n→∞ 时, 显然 u n u_{n} un 不可能以零为极限,因而由级数收敛的必要条件可知, 级数 ∑ u n \sum u_{n} ∑un 是发散的.
推论 1 根式判别法的极限形式
设 ∑ u n \sum u_{n} ∑un 为正项级数, 且
lim n → ∞ u n n = l , ( 13 ) \lim \limits_{n \rightarrow \infty} \sqrt[n]{u_{n}}=l \text {, } \quad\quad(13) n→∞limnun=l, (13)
则
- (i) 当 l < 1 l<1 l<1 时,级数 ∑ u n \sum u_{n} ∑un 收敛;
- (ii) 当 l > 1 l>1 l>1 时,级数 ∑ u n \sum u_{n} ∑un 发散.
证
由 (13) 式, 当取 ε < ∣ 1 − l ∣ \varepsilon<|1-l| ε<∣1−l∣ 时, 存在某正数 N N N, 对一切 n > N n>N n>N, 有
l − ε < u n n < l + ε . l-\varepsilon<\sqrt[n]{u_{n}}<l+\varepsilon . l−ε<nun<l+ε.
于是由定理 12.8 就能得到这个推论所要证明的结论.
例 7
研究级数 ∑ 2