数学分析(十二)-数项级数2-正项级数-敛散性判别法3:根式判别法(柯西判别法)【极限形式:lim_{n→∞}(ⁿ√uₙ)=l,若l<1则级数Σuₙ收敛;若l>1则级数Σuₙ发散】

本文详细介绍了数学分析中的柯西判别法(又称根式判别法),用于判断正项级数的敛散性。通过定理和推论阐述了当lim_{n→∞}(ⁿ√uₙ)=l时,l<1级数收敛,l>1级数发散。并给出多个实例,如级数∑2n^2+(-1)^n,证明了根式判别法在某些情况下比比式判别法更有效。
摘要由CSDN通过智能技术生成

定理 12.8 (柯西判别法, 或称根式判别法)

∑ u n \sum u_{n} un 为正项级数, 且存在某正数 N 0 N_{0} N0及正常数 l l l,

  • (i) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
    u n n ⩽ l < 1 , ( 11 ) \sqrt[n]{u_{n}} \leqslant l<1, \quad\quad(11) nun l<1,(11)
    则级数 ∑ u n \sum u_{n} un 收敛;
  • (ii) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
    u n n ⩾ 1 , ( 12 ) \sqrt[n]{u_{n}} \geqslant 1, \quad\quad(12) nun 1,(12)
    则级数 ∑ u n \sum u_{n} un 发散.


由(11)式有

u n ⩽ l n . u_{n} \leqslant l^{n} . unln.

因为等比级数 ∑ l n \sum l^{n} ln 0 < l < 1 0<l<1 0<l<1 时收敛, 故由比较原则, 这时级数 ∑ u n \sum u_{n} un 也收敛, 对于情形 (ii), 由 (12) 式可推得

u n ⩾ 1 n = 1. u_{n} \geqslant 1^{n}=1 . un1n=1.

n → ∞ n \rightarrow \infty n 时, 显然 u n u_{n} un 不可能以零为极限,因而由级数收敛的必要条件可知, 级数 ∑ u n \sum u_{n} un 是发散的.

推论 1 根式判别法的极限形式

∑ u n \sum u_{n} un 为正项级数, 且
lim ⁡ n → ∞ u n n = l ,  ( 13 ) \lim \limits_{n \rightarrow \infty} \sqrt[n]{u_{n}}=l \text {, } \quad\quad(13) nlimnun =l(13)

  • (i) 当 l < 1 l<1 l<1 时,级数 ∑ u n \sum u_{n} un 收敛;
  • (ii) 当 l > 1 l>1 l>1 时,级数 ∑ u n \sum u_{n} un 发散.


由 (13) 式, 当取 ε < ∣ 1 − l ∣ \varepsilon<|1-l| ε<∣1l 时, 存在某正数 N N N, 对一切 n > N n>N n>N, 有

l − ε < u n n < l + ε . l-\varepsilon<\sqrt[n]{u_{n}}<l+\varepsilon . lε<nun <l+ε.

于是由定理 12.8 就能得到这个推论所要证明的结论.

例 7
研究级数 ∑ 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值