设函数 f ( x , y ) f(x, y) f(x,y) 定义在无界区域 R = { ( x , y ) ∣ x ∈ I , c ⩽ y < + ∞ } R=\{(x, y) \mid x \in I, c \leqslant y<+\infty\} R={(x,y)∣x∈I,c⩽y<+∞} 上, 其中 I I I为一区间,若对每一个固定的 x ∈ I x \in I x∈I, 反常积分
∫ c + ∞ f ( x , y ) d y ( 1 ) \int_{c}^{+\infty} f(x, y) \mathrm{d} y \quad\quad(1) ∫c+∞f(x,y)dy(1)
都收敛,则它的值是 x x x 在 I I I 上取值的函数,当记这个函数为 Φ ( x ) \Phi(x) Φ(x) 时,则有
Φ ( x ) = ∫ c + ∞ f ( x , y ) d y , x ∈ I , ( 2 ) \Phi(x)=\int_{c}^{+\infty} f(x, y) \mathrm{d} y, x \in I, \quad\quad(2) Φ(x)=∫c+∞f(x,y)dy,x∈I,(2)
称 (1) 式为定义在 I I I 上的含参量 x x x 的无穷限反常积分,或简称含参量反常积分.
如同反常积分与数项级数的关系那样,含参量反常积分与函数项级数在所研究的问题与论证方法上也极为相似.
首先引人含参量反常积分的一致收敛概念及柯西准则.
定义 1
若含参量反常积分 (1) 与函数 Φ ( x ) \Phi(x) Φ(x) 对任给的正数 ε \varepsilon ε,总存在某一实数 N > N> N> c c c, 使得当 M > N M>N M>N 时, 对一切 x ∈ I x \in I x∈I, 都有
∣ ∫ c ′ ′ f ( x , y ) d y − Φ ( x ) ∣ < ε , \left|\int_{c}^{\prime \prime} f(x, y) \mathrm{d} y-\Phi(x)\right|<\varepsilon, ∫c′′f(x,y)dy−Φ(x) <ε,
即
∣ ∫ M + ∞ f ( x , y ) d y ∣ < ε , \left|\int_{M}^{+\infty} f(x, y) \mathrm{d} y\right|<\varepsilon, ∫M+∞f(x,y)dy <ε,
则称含参量反常积分 ( 1 ) (1) (1) 在 I I I 上一致收敛于 Φ ( x ) \Phi(x) Φ(x),或简单地说含参量反常积分 ( 1 ) (1) (1) 在 I I I 上一致收敛.
定理 19.7 (一致收敛的柯西准则)
含参量反常积分 (1) 在 I I I上一致收敛的充要条件是: 对任给正数 ε \varepsilon ε, 总存在某一实数 M > c M>c M>c,使得当 A 1 , A 2 > M A_{1}, A_{2}>M A1,A2>M 时, 对一切 x ∈ I x \in I x∈I, 都有
∣ ∫ A 1 h 2 f ( x , y ) d y ∣ < ε . ( 3 ) \left|\int_{A_{1}}^{h_{2}} f(x, y) \mathrm{d} y\right|<\varepsilon . \quad\quad(3) ∫A1h2f(x,y)dy <ε.(3)
由定义 1 , 我们还有以下含参量反常积分一致收敛的判别准则.
定理 19.8
含参量反常积分 ∫ e + ∞ f ( x , y ) d y \int_{e}^{+\infty} f(x, y) \mathrm{d} y ∫e+∞f(x,y)dy 在 I I I 上一致收敛的充分必要条件是
lim A → + ∞ F ( A ) = 0 , \lim \limits_{A \rightarrow+\infty} F(A)=0, A→+∞limF(A)=0,
其中 F ( A ) = sup x ∈ Y ∣ ∫ A + ∞ f ( x , y ) d y ∣ F(A)=\sup _{x \in Y}\left|\int_{A}^{+\infty} f(x, y) \mathrm{d} y\right| F(A)=supx∈Y ∫A+∞f(x,y)dy .
例 1
证明含参量反常积分
∫ 0 + ∞ sin x y y d y ( 4 ) \int_{0}^{+\infty} \cfrac{\sin x y}{y} \mathrm{~d} y \quad\quad(4) ∫0+∞ysinxy dy(4)
在 [ δ , + ∞ ) [\delta,+\infty) [δ,+∞) 上一致收敛(其中 δ > 0 ) \delta>0) δ>0), 但在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上不一致收敛.
证
先证(4) 式在 [ δ , + ∞ ) [\delta,+\infty) [δ,+∞) 上一致收敛. 作变量代换 u = x y u=x y u=xy,得
∫ A + ∞ sin x y y d y = ∫ A x + ∞ sin u u d u , ( 5 ) \int_{A}^{+\infty} \cfrac{\sin x y}{y} \mathrm{~d} y=\int_{A x}^{+\infty} \cfrac{\sin u}{u} \mathrm{~d} u, \quad\quad(5) ∫A+∞ysinxy dy=∫Ax+∞usinu du,(5)
其中 A > 0 A>0 A>0. 由于 ∫ 0 + ∞ sin u u d u \int_{0}^{+\infty} \cfrac{\sin u}{u} \mathrm{~d} u ∫0+∞usinu du收敛, 故对任给正数 ε \varepsilon ε, 总存在正数 M ′ M^{\prime} M′, 使当 A ′ > M ′ A^{\prime}>M^{\prime} A′>M′ 时, 就有
∣ ∫ A ∗ + ∞ sin u u d u ∣ < ε . \left|\int_{A^{*}}^{+\infty} \cfrac{\sin u}{u} \mathrm{~d} u\right|<\varepsilon . ∫A∗