数学分析(十九)-含参量积分2-含参量反常积分1:一致收敛性及其判别法【柯西准则、魏尔斯特拉斯M判别法、狄利克雷判别法、阿贝尔判别法】

本文介绍了含参量反常积分的概念,特别是其一致收敛性的定义、柯西准则和一些判别法,如魏尔斯特拉斯M判别法、狄利克雷判别法和阿贝尔判别法,并通过举例说明如何判断含参量反常积分的一致收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设函数 f ( x , y ) f(x, y) f(x,y) 定义在无界区域 R = { ( x , y ) ∣ x ∈ I , c ⩽ y < + ∞ } R=\{(x, y) \mid x \in I, c \leqslant y<+\infty\} R={(x,y)xI,cy<+} 上, 其中 I I I为一区间,若对每一个固定的 x ∈ I x \in I xI, 反常积分

∫ c + ∞ f ( x , y ) d y ( 1 ) \int_{c}^{+\infty} f(x, y) \mathrm{d} y \quad\quad(1) c+f(x,y)dy(1)

都收敛,则它的值是 x x x I I I 上取值的函数,当记这个函数为 Φ ( x ) \Phi(x) Φ(x) 时,则有

Φ ( x ) = ∫ c + ∞ f ( x , y ) d y , x ∈ I , ( 2 ) \Phi(x)=\int_{c}^{+\infty} f(x, y) \mathrm{d} y, x \in I, \quad\quad(2) Φ(x)=c+f(x,y)dy,xI,(2)

称 (1) 式为定义在 I I I 上的含参量 x x x无穷限反常积分,或简称含参量反常积分.

如同反常积分与数项级数的关系那样,含参量反常积分与函数项级数在所研究的问题与论证方法上也极为相似.

首先引人含参量反常积分的一致收敛概念及柯西准则.

定义 1

若含参量反常积分 (1) 与函数 Φ ( x ) \Phi(x) Φ(x) 对任给的正数 ε \varepsilon ε,总存在某一实数 N > N> N> c c c, 使得当 M > N M>N M>N 时, 对一切 x ∈ I x \in I xI, 都有

∣ ∫ c ′ ′ f ( x , y ) d y − Φ ( x ) ∣ < ε , \left|\int_{c}^{\prime \prime} f(x, y) \mathrm{d} y-\Phi(x)\right|<\varepsilon, c′′f(x,y)dyΦ(x) <ε,

∣ ∫ M + ∞ f ( x , y ) d y ∣ < ε , \left|\int_{M}^{+\infty} f(x, y) \mathrm{d} y\right|<\varepsilon, M+f(x,y)dy <ε,

则称含参量反常积分 ( 1 ) (1) (1) I I I一致收敛于 Φ ( x ) \Phi(x) Φ(x),或简单地说含参量反常积分 ( 1 ) (1) (1) I I I 上一致收敛.

定理 19.7 (一致收敛的柯西准则)

含参量反常积分 (1) 在 I I I上一致收敛的充要条件是: 对任给正数 ε \varepsilon ε, 总存在某一实数 M > c M>c M>c,使得当 A 1 , A 2 > M A_{1}, A_{2}>M A1,A2>M 时, 对一切 x ∈ I x \in I xI, 都有

∣ ∫ A 1 h 2 f ( x , y ) d y ∣ < ε . ( 3 ) \left|\int_{A_{1}}^{h_{2}} f(x, y) \mathrm{d} y\right|<\varepsilon . \quad\quad(3) A1h2f(x,y)dy <ε.(3)

由定义 1 , 我们还有以下含参量反常积分一致收敛的判别准则.

定理 19.8

含参量反常积分 ∫ e + ∞ f ( x , y ) d y \int_{e}^{+\infty} f(x, y) \mathrm{d} y e+f(x,y)dy I I I 上一致收敛的充分必要条件是

lim ⁡ A → + ∞ F ( A ) = 0 , \lim \limits_{A \rightarrow+\infty} F(A)=0, A+limF(A)=0,

其中 F ( A ) = sup ⁡ x ∈ Y ∣ ∫ A + ∞ f ( x , y ) d y ∣ F(A)=\sup _{x \in Y}\left|\int_{A}^{+\infty} f(x, y) \mathrm{d} y\right| F(A)=supxY A+f(x,y)dy .

例 1
证明含参量反常积分

∫ 0 + ∞ sin ⁡ x y y   d y ( 4 ) \int_{0}^{+\infty} \cfrac{\sin x y}{y} \mathrm{~d} y \quad\quad(4) 0+ysinxy dy(4)

[ δ , + ∞ ) [\delta,+\infty) [δ,+) 上一致收敛(其中 δ > 0 ) \delta>0) δ>0), 但在 ( 0 , + ∞ ) (0,+\infty) (0,+)上不一致收敛.


先证(4) 式在 [ δ , + ∞ ) [\delta,+\infty) [δ,+) 上一致收敛. 作变量代换 u = x y u=x y u=xy,得

∫ A + ∞ sin ⁡ x y y   d y = ∫ A x + ∞ sin ⁡ u u   d u , ( 5 ) \int_{A}^{+\infty} \cfrac{\sin x y}{y} \mathrm{~d} y=\int_{A x}^{+\infty} \cfrac{\sin u}{u} \mathrm{~d} u, \quad\quad(5) A+ysinxy dy=Ax+usinu du,(5)

其中 A > 0 A>0 A>0. 由于 ∫ 0 + ∞ sin ⁡ u u   d u \int_{0}^{+\infty} \cfrac{\sin u}{u} \mathrm{~d} u 0+usinu du收敛, 故对任给正数 ε \varepsilon ε, 总存在正数 M ′ M^{\prime} M, 使当 A ′ > M ′ A^{\prime}>M^{\prime} A>M 时, 就有

∣ ∫ A ∗ + ∞ sin ⁡ u u   d u ∣ < ε . \left|\int_{A^{*}}^{+\infty} \cfrac{\sin u}{u} \mathrm{~d} u\right|<\varepsilon . A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值