数学分析(十一)-反常积分2-无穷积分2:非负函数无穷积分的敛散判别法

本文介绍了非负函数在 [a,+∞) 上的无穷积分的收敛判别法,包括比较原则和柯西判别法。通过举例说明如何判断 ∫a+∞f(x)dx 和 ∫a+∞g(x)dx 的敛散性,以及推论在不同条件下的应用。" 122809776,11241526,MySQL存储过程执行跟踪与分析,"['MySQL', '数据库', 'SQL', '性能监控', '存储过程调试']
摘要由CSDN通过智能技术生成

首先给出非负函数无穷积分的比较判别法.

f f f 是定义在 [ a , + ∞ ) [a,+\infty) [a,+) 上的非负函数, 且在任何有限区间 [ a , u ] [a, u] [a,u]上可积. 由于 ∫ a u f ( x ) d x \int_{a}^{u} f(x) \mathrm{d} x auf(x)dx 关于上限 u u u 是单调递增的,因此 ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty} f(x) \mathrm{d} x a+f(x)dx 收玫的充要条件是 ∫ a u f ( x ) d x \int_{a}^{u} f(x) \mathrm{d} x auf(x)dx [ a , + ∞ ) [a,+\infty) [a,+) 上存在上界.

根据这一分析, 便立即导出下述比较判别法 (请读者自己写出证明).

定理 11.2 (比较原则)

设定义在 [ a , + ∞ ) [a,+\infty) [a,+) 上的两个非负函数 f f f g g g都在任何有限区间 [ a , u ] [a, u] [a,u] 上可积,且满足

f ( x ) ⩽ g ( x ) , x ∈ [ a , + ∞ ) , f(x) \leqslant g(x), x \in[a,+\infty), f(x)g(x),x[a,+),

则当 ∫ a + ∞ g ( x ) d x \int_{a}^{+\infty} g(x) \mathrm{d} x a+g(x)dx 收敛时, ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty} f(x) \mathrm{d} x a+f(x)dx 必收敛 (或当 ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty} f(x) \mathrm{d} x a+f(x)dx 发散时, ∫ a + ∞ g ( x ) d x \int_{a}^{+\infty} g(x) \mathrm{d} x a+g(x)dx必发散).

例 1
讨论 ∫ 0 + ∞ sin ⁡ x 1 + x 2   d x \int_{0}^{+\infty} \cfrac{\sin x}{1+x^{2}} \mathrm{~d} x 0+1+x2sinx 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值