首先给出非负函数无穷积分的比较判别法.
设 f f f 是定义在 [ a , + ∞ ) [a,+\infty) [a,+∞) 上的非负函数, 且在任何有限区间 [ a , u ] [a, u] [a,u]上可积. 由于 ∫ a u f ( x ) d x \int_{a}^{u} f(x) \mathrm{d} x ∫auf(x)dx 关于上限 u u u 是单调递增的,因此 ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty} f(x) \mathrm{d} x ∫a+∞f(x)dx 收玫的充要条件是 ∫ a u f ( x ) d x \int_{a}^{u} f(x) \mathrm{d} x ∫auf(x)dx 在 [ a , + ∞ ) [a,+\infty) [a,+∞) 上存在上界.
根据这一分析, 便立即导出下述比较判别法 (请读者自己写出证明).
定理 11.2 (比较原则)
设定义在 [ a , + ∞ ) [a,+\infty) [a,+∞) 上的两个非负函数 f f f 和 g g g都在任何有限区间 [ a , u ] [a, u] [a,u] 上可积,且满足
f ( x ) ⩽ g ( x ) , x ∈ [ a , + ∞ ) , f(x) \leqslant g(x), x \in[a,+\infty), f(x)⩽g(x),x∈[a,+∞),
则当 ∫ a + ∞ g ( x ) d x \int_{a}^{+\infty} g(x) \mathrm{d} x ∫a+∞g(x)dx 收敛时, ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty} f(x) \mathrm{d} x ∫a+∞f(x)dx 必收敛 (或当 ∫ a + ∞ f ( x ) d x \int_{a}^{+\infty} f(x) \mathrm{d} x ∫a+∞f(x)dx 发散时, ∫ a + ∞ g ( x ) d x \int_{a}^{+\infty} g(x) \mathrm{d} x ∫a+∞g(x)dx必发散).
例 1
讨论 ∫ 0 + ∞ sin x 1 + x 2 d x \int_{0}^{+\infty} \cfrac{\sin x}{1+x^{2}} \mathrm{~d} x ∫0+∞1+x2sinx