Crowds by Example全文翻译

Crowds by Example

 

我们提出了一种基于示例的人群模拟技术。大多数人群模拟技术都假设人群中每个人所表现出的行为可以由一组受限的规则来定义。这一假设限制了模拟代理的行为复杂性。通过从现实世界的示例中学习,我们的自主代理显示了复杂的自然行为,这些行为在人群模拟中通常会丢失。示例是从真实行人人群的跟踪视频片段中创建的。在模拟过程中,自主代理搜索与其面临的情况密切匹配的示例。真实的人在类似情况下采取的轨迹,被复制到模拟的代理,产生看似自然的行为。

 

  1. Introduction

人群是我们日常生活的重要组成部分。在街道上,在我们的工作场所,或在购物中心,我们被包围,成为人群的一部分。人群的存在和动态极大地影响了场景的氛围。因此,计算机生成的人群在电影、计算机游戏和其他虚拟世界应用程序和模拟中变得普遍。随着这些应用程序继续努力实现更高级别的真实感和场景复杂性,对逼真和可信的人群模拟的需求越来越大。尽管用于制作单个人类角色的动画的方法取得了突飞猛进的进展,但自动制作可信的行人人群的动画仍然是一个挑战。

 

“人群”的定义非常宽泛,包括从交战的军队到在校园里玩耍的孩子;然而,这些人群展示的集体动力彼此之间有很大的不同。大多数现有技术对模拟个体的行为做出简化假设,同时仍然努力传达真实人类群体的复杂性。虽然这样的方法可能会捕捉到人群广泛的整体行为,但它们往往忽略了个人所展示的微妙细节。在真实人群中可以观察到的个体行为的范围对于简单的行为模型来说通常过于复杂。在这项工作中,我们探索了一种数据驱动的方法,我们根据预先捕获的示例模拟行人人群。

 

Reynolds[Rey99]将自主代理的行为分为三层:动作选择(策略,目标规划),转向(路径确定)和运动(动画,发音)。在本文中,我们专注于代理行为的指导方面:我们的目标是为人群中的每个个体合成一个现实的轨迹,以便当这些轨迹结合在一起时,出现一个可信的人群行为。我们假设有一个单独的专用机制可用于执行每个个体的运动。此外,在这项工作中,代理并不试图实现特定的目标。相反,它们以由驱动模拟的示例输入确定的方式移动。

 

我们的方法是数据驱动的。给定从真实人群的视频中提取的一组轨迹,我们构建了示例数据库:每个示例描述了原始数据中存在的局部时空场景。在模拟过程中,我们为模拟中的每个代理合成单独的轨迹。每个代理是自主的,但其轨迹是通过考虑其与其他附近代理和障碍的时空关系,并在数据库中搜索相似的场景来增量合成的。

 

图1:结果模拟的典型图像。由输入示例隐含地生成各种行为,例如(A)暂停以查看商店橱窗,(B)平滑的冲突避免和(C)组行为。

 

看待我们的方法的一种方法是,我们将基于规则的反应性行为模型替换为基于示例的反应性行为模型。我们代理的行为被确定为对当前环境配置的反应。基于规则的方法通常只考虑一小部分预定义的行为和预定义的情况,并考虑场景中有限数量的因素。在我们的方法中,有多少个例子就有多少不同的情况和反应。每个反应都可能取决于任意数量的因素。因此,在我们的方法中,存在大量可能复杂的规则,这些规则由输入数据隐式定义。

 

总而言之,我们的方法的特点是:

--它产生了一个具有各种个体代理行为的现实群体行为(图1)。

--除了用于在数据库中构造示例的一组局部时空因素外,它对代理的行为没有任何假设。

--通过改变输入示例,相同的系统可以用于许多不同类型的人群和设置。

--从不同情况提取的示例可以在合成过程中混合,以便支持共享相同环境的不同类型的代理。

 

  1. Related Work

人群模拟的研究是近年来计算机图形学、土木工程、物理学、社会学和机器人学等多个领域的活跃主题。一些流行的方法吸收了流体力学的思想[Hug03,TCP06],而另一些则利用粒子和社会力量[HM95,HLTC03]。尽管这些方法中的一些非常有效,可以相当好地捕捉人群的聚合行为,但它们不能完全捕捉单个行为的范围或微妙之处。简单的事情,比如结对散步,停下来和某人说话,改变主意,转向不同的方向,或者漫无目的地徘徊,这些只是一些很难捕捉到的例子。

 

另一方面,基于规则的方法可以潜在地为特定情况产生现实的结果。缺点是它们需要许多微调的特定规则,这些规则很难定义并且经常出错。在新的情况下,需要制定一套新的规则。Reynolds[Rey87]提出了最早的基于规则的方法之一,能够为动物“群体”创造看似自然的群集行为。这后来被扩展到包括更多的行为,如寻找,追求和逃避[Rey99]。一些工作考虑了规则定义的认知决策机制。在Terzopoulos等人的工作中。艾尔。[TTG94]为模拟鱼定义了一系列个体特征,如饥饿和恐惧,从而产生适当的行为。Funge et.。艾尔。[FTT99]模拟代理,不仅感知环境,而且从中学习,并使用领域知识从预定义的集合中选择最合适的行为。Musse et.。艾尔。[MT97]在定义行为模型时考虑了社会学方面的因素。

 

另一组基于规则的系统更集中于路径规划和转向行为,[LMM03,LD04,ST05]。在这些系统中,局部反应性行为规则产生不同的行为,如碰撞避免,车道形成,甚至一些有限的群体行为。宋埃。艾尔。[SGC04]使用概率方法为模拟代理选择操作,而两个Farenc ET。艾尔。[FBT99]和Thomas和Donikian[TD00]使用存储在环境中的信息,以便向模拟代理提供行为提示。

 

一些最令人印象深刻的人群模拟系统出现在娱乐业,例如海量软件[Mas06]和AI.implant[AI.06]。虽然这些系统可以生成看起来自然的人群,但需要一些技能和专业知识才能做到这一点。

 

我们的工作目标是产生不仅投影自然的人群氛围,而且还显示出广泛的复杂的个人行为的人群,这些行为在模拟代理被单独检查时可能会被看到。我们的目的是在不定义显式行为模型的情况下实现这个目标。因此,我们转向一种数据驱动的方法,通过这种方法,我们的代理“学习”如何从真实世界的示例中行为。

 

近年来,基于实例的技术在计算机图形学的许多领域中得到了广泛的应用。例如,许多最近的纹理合成技术能够从小示例合成大纹理[KSE∗03]并填充图像中的孔[DCOY03]。图像类比方法使用示例来学习和再现图像对之间的关系[HJO∗01]。其他应用包括表面补全[SACO04]、图像彩色化[ICOL05]、图像分割[SCCOL06]。基于示例的方法也被成功地使用动画和运动合成[lt01,kgp02,hpp05,rsh∗05]

 

上述基于示例的技术是特定于领域的,不能直接应用于群组模拟,但是有一些群组模拟工作确实使用了实例。Metoyer和Hodgins[MH03]允许用户定义具体的行为示例,而Musse et。艾尔。[MJBJ06]从视频中提取特定环境的路径。在这两种情况下,示例都用于细化底层行为模型,因此它们仍然受到模型的限制。在赖特的工作中。艾尔。[LCF05]使用运动图法来合成组行为。为了能够构建易于处理的运动图,该方法假设输入示例遵循良好定义的行为模型,例如具有受限配置空间的群集系统。人类行人人群运动的巨大差异将使这种方法不切实际。

 

图2:我们方法的概述。最上面一行描述了数据库的构建,这发生在预处理过程中:手动跟踪输入视频,生成一组轨迹。这些被编码为示例并存储在数据库中。在运行时,底部行,通过对代理的环境进行编码(形成查询)并在数据库中搜索相似的示例,分别合成代理的轨迹。将示例中的轨迹复制到模拟代理。

 

  1. Overview

在这项工作中,我们通过将取自真实世界示例的行为片段缝合在一起来合成人群动画。这是一个由两部分组成的过程。作为预处理,我们创建了一个包含示例的数据库。例如,一个特定的人在给定的环境中的行为影响了该行为。通过行为,我们指的是代理在短时间内的轨迹。第二部分是模拟人群的在线合成。对于每个代理,我们在数据库中找到类似的情况,并复制相应的轨迹。

 

示例数据库的构造在第4节中描述,如图2(顶行)所示。我们的目标是创建一组示例,展示人们在各种情况下的反应。为此,我们使用消费级相机拍摄了几个短视频(几分钟长)。视频是从高处拍摄的,以避免需要对数据进行正射校正,并使跟踪更容易。开发了一个专用工具,用于手动跟踪人员并识别静态几何图形。从每个人,随着他的前进,我们创造了一些回应的例子。这里的关键问题是:周围环境的哪个部分,移动或静止,影响行人的路径,这种影响的程度是什么?这个问题的答案体现在我们对影响函数的使用中,如第4.2节所述。

 

一旦构建了示例数据库,我们就可以合成群体,如第5节所述,如图2所示(底行)。我们从静态虚拟环境开始,其中几何图形的各个部分都进行了注释(例如,墙壁和街道被标记为这样)。然后用所需数量的代理填充场景,每个代理都用合理的位置和速度进行初始化。然后合成过程如下进行。对于每个代理,我们构建一个反映其当前环境配置的查询,其方式类似于构建示例时使用的方式。查询用于搜索具有最接近匹配配置的示例。示例的主题遵循的轨迹被复制到模拟代理,生成自然的外观行为。挑战在于量化查询和示例之间的相似性,以便为每个查询选择最合适的示例。这一过程在第5.1节中有详细的描述。

 

应当注意,基于我们在输入示例和现实生活中观察到的行为的直观理解,在第4.2节中描述的影响函数和在5.1节中描述的查询匹配函数是以启发式方式定义的。虽然这些功能在我们的实验中表现良好,但有可能(甚至很可能)不同的启发式方法,或基于对人类行为更系统的研究的功能,可能会产生更可信的人群

 

  1. 建立示例数据库

给定一个人群的视频,其中已经跟踪了不同个体的轨迹,并且已经识别了场景中的相关静态几何图形,我们的目标是构建一个大型示例数据库。然后,该数据库将用于生成模拟人群中代理的轨迹。在本节中,我们将介绍数据库的构造

 

    1. 示例和查询

一个示例,在本文的其余部分中表示为E,由两个组件组成。第一个分量是轨迹(路径)的一段,在某个时间点由视频中的一个个体跟随。我们将这个人称为示例主题。示例的第二个组成部分是可能影响受试者轨迹的因素的配置。影响因素可能是另一个个体或场景中的某个动态或静态几何体。为简单起见,我们将仅将代理称为潜在影响因素,然而,障碍以完全相同的方式处理。

 

对于每个影响因素,我们存储其路径(如果它是代理)或其端点和类型(对于任何其他对象)。在这两种情况下,我们还存储了我们认为它对主体轨迹的影响量。所有路径都具有预定义的长度(在我们的模拟中设置为40帧),并且可以以连续2D样条的紧凑形式存储,也可以存储为每帧的{位置,方向,速度}的三倍,这更详细,但使用更快。

 

每个示例都是使用其自身的局部坐标系定义的,示例主题放置在原点(0,0)处并面向正Y轴(参见图3)。所有影响因素(其他因素和几何)及其相应的路径都在此坐标系中表示。

 

在模拟过程中,每当我们需要确定其中一个代理的下一个轨迹段时,我们就形成一个查询。查询以与示例相同的方式形成。唯一的区别是,在形成查询时,我们可能没有影响因素的所有未来路径,因此它们是通过外推它们的已知路径生成的(直到查询时为止)。

 

图3:基于距离的影响函数infe的离散渲染。(A)周围配置。(B)影响因素在段的时间长度上的轨迹。沿路径的最大重要性值被用来确定代理的影响值。(C)计算影响值后的周围配置。

 

    1. 影响函数

行人在人群中的轨迹受到许多因素的影响,其中可能包括地形、障碍物的存在、与其他人的距离、行人的个性和心态等。从一段人群的视频中,只有一些因素是显而易见的。它们是场景中的静态几何体(障碍物),以及人群中不同时间点的个体的位置和速度。因此,我们方法背后的基本简化假设是,这些是将在我们的人群模拟中考虑的唯一影响因素。我们还假设我们的人群在基本上是平面的地形上移动。

 

考虑在时间步骤t处的代理i,并让E表示将从它创建的示例。环境中的每个代理j潜在地影响i的轨迹。这里有一些观察结果。第一个是代理的影响应该随着与i的距离减小。其次,我们观察到在i前面的代理可能比那些在i后面的代理对其轨迹有更大的影响。最后,我们观察到,每个代理的影响必须在一个时间窗口内评估,而不仅仅是在单个时间实例上评估。

 

让函数表示代理j在时间对代理i的基于距离的影响。我们在与i的行走方向对齐的局部坐标系上定义此基于距离的影响函数,如图3所示。该函数本身由垂直于行走方向的高斯衰减函数和与行走方向对齐的另一个(不对称)衰减函数的乘积给出(参见图3)。

具体地说,设d是j与i在时间的(缩放)距离,然后我们设置

 

其中v是i在时间的行走速度。基于距离的影响函数由以下衰减函数的乘积给出:

为了获得有限时间窗口上的影响函数,我们简单地使用在该时间窗口中获得的最大值,通过所有影响因素的值进行归一化:

图4:影响因素相对于主体具有相似的初始位置。然而,由于它们的相对速度不同,紫色代理(左)对受试者的最终路径有更大的影响。

 

在有限时间窗口上取最大值是必要的,因为它使我们能够保持影响函数简单,但同时将非常不同的影响值分配给具有t个相似的相对位置,但相对速度不同的邻近代理,相对于i,如图4所示。如果最大影响值低于预定义的截止值,那么我们假设代理对I的轨迹有可忽略的影响。

 

在形成查询时,我们不必拥有周围代理的所有附加路径信息。如果周围的代理具有模拟的路径信息,我们将以与示例中相同的方式使用它。使用其当前位置和速度外推对象代理和无路径周围代理的路径。

 

  1. Crowd Simulation

给定示例数据库,可以模拟人群。首先,用所需数量的代理填充场景,然后仿真过程重复考虑每个参与代理,并为每个代理单独决定是否需要新的轨迹。这个决定基于两个标准:

 

--代理是否耗尽了分配给它的最后一个轨迹段?

--当前环境配置与上次分配时存在的配置之间的变化有多大?

 

请注意,随着模拟的进行,代理的周围配置不断变化,影响因素可能会进入和离开。如果当前配置与上次分配时的配置明显不同,则丢弃段的其余部分,并找到并指定新的轨迹段。使用5.1节中描述的匹配函数计算配置之间的相似性。为了保持运动的平滑性,在轨迹指定之后,对于前15帧(大致相当于一个行走步骤的持续时间),不检查配置之间的重大变化。

 

为了将新的轨迹段分配给代理k,我们首先形成一个以代理为主题的查询Q,如上一节所述。接下来,我们在示例数据库中搜索最合适的示例E。一旦找到这样的示例,我们就将其路径段分配给代理k。相似性值是在连续尺度上计算的,其中小于或等于0的值表示不相关的配置,值1表示完全相同的配置。从E复制的轨迹段的时间长度等于段的最大时间长度乘以配置之间的相似度值

 

原则上,要使用的最合适的示例应该是与查询具有最高相似性值的示例。然而,由于匹配几乎从不精确,因此具有高相似度值的示例可能导致冲突。通过检查每个影响因素的路径(指定的或外推的)并针对示例路径测试它们的冲突来避免冲突。如果最佳匹配导致冲突,我们将移动到下一个最佳匹配,直到找到无冲突匹配。如果不存在这样的匹配,我们寻找冲突避免路径,如5.2中所述。

 

    1. Matching Function

理想情况下,对于任何给定的查询Q,我们应该能够找到一个示例,其主题以相同的速度行走,并且具有相同的影响因素配置。不幸的是,这在实践中极不可能发生。因此,我们定义了一个函数Sim(Q,E),其目的是量化查询Q和示例E之间的相似性。为了生成似是而非的行为,Q中的影响因素应该与E中的影响因素相匹配,以及评估的每个匹配的亲和力(参见图5)。影响代理k∈q和j∈E之间的亲和力是使用它们在查询的本地坐标系中沿着它们的路径段的位置、方向和速度来测量的:

 

其中SimValt0(k,j)是高斯乘法,量化影响因素之间的相似性。在匹配代理的情况下,相似性是根据位置、方向和速度的差异来量化的。在匹配障碍物(例如墙壁)的情况下,根据障碍物方向的差异和障碍物上最接近查询对象的点的位置来量化相似性。所有高斯的方差与查询主题的速度成反比。请注意,一个人不能与障碍匹配,因为他们的行为从根本上是不同的

图5:匹配函数。(A)圆圈表示查询和示例影响因素之间的匹配。在这种情况下,并非所有的影响因素都匹配。(B)不仅根据当前帧确定匹配的质量,而且还根据一段时间的平均匹配来确定匹配的质量。对于查询代理,将外推缺少的路径段

 

影响因子k∈Q与产生最高亲和值ME(K)的影响因子j∈E匹配。结果,查询中的几个影响因素可以与示例中的相同影响因素匹配。因此,在计算匹配值时,我们使用AvgInfE(J),它将infe(J)除以j与来自q的影响因素匹配的次数:

如果不是查询Q或示例E中的所有影响因素都匹配,则计算惩罚值Um(Q,E),其是查询和示例惩罚的平均值。我们将惩罚定义为不匹配影响值的平方和:

为了确保一个路径段和另一个路径段之间的平滑过渡,查询和示例主题的速度必须相似,因此我们使用高斯S(Q,E),它量化速度的差异。其方差与查询主题的速度成反比。

 

最后,相似性函数Sim(Q,E)对匹配值求和,减去惩罚值Um(Q,E),并将结果乘以速度匹配函数,

    1. Collision Avoiding Paths

在理想情况下,在我们的模拟中不应该发生碰撞。如果配置空间被适当覆盖,则应该总是可以找到无冲突匹配示例。然而,由于不完全覆盖,偶尔可能会出现匹配示例都不会导致无冲突解决方案的情况。在这种情况下,我们使用我们的碰撞避免方案。我们搜索一个路径段,该路径段将引导代理远离冲突,而不匹配周围的配置。通过这样做,我们本质上定义了数据库中有多少个冲突避免路径就有多少个冲突避免规则。

 

解决冲突的不同路径段的数量很大。为了保持行为的可信度,我们选择一个确保平稳过渡到所选部分的策略。为此,我们使用亲和力函数来量化查询的轨迹历史段与示例轨迹历史段之间的相似性。我们选择在避免冲突的同时最大化函数的路径。如果存在不止一条这样的路径,则随机选择一条。

 

  1. Discussion

通过示例合成人群需要创建示例数据库。示例是从真实人群的视频中创建的。站在建筑物的屋顶上,我们拍摄了几个人群视频,每个视频的长度约为5分钟(参见图6)。尽管最近在自动跟踪人群中人的运动方面取得了一些进展[BC06],但我们还没有可靠的方法可用。因此,我们手动跟踪了这些人。此外,我们还标记了建筑物、墙、门和其他有影响的对象,例如人行道的边缘。跟踪时间根据视频的长度和出现在其中的人数而变化。追踪稀疏的人群需要几个小时,而密度较大的人群可能需要一天

 

可以从视频创建的示例的数量取决于视频的长度和出现在其中的人群的密度。如果在路径段的时间长度上存在针对个体及其影响因素的跟踪信息(在这里报告的结果中设置为40帧),则可以从特定帧处的个体创建示例。显然,在连续帧上从同一主题创建的两个示例可能非常相似,如果不是完全相同的话。我们将匹配函数应用于来自连续帧的示例,过滤掉几乎相同的示例。表1显示了从不同的输入视频创建的示例的数量。构建示例数据库所需的时间范围从稀疏人群视频的30秒到密集视频的8.5分钟。存储它所需的内存量在50MB到150MB之间。

表1:过滤前后从三个输入人群创建的示例数量。

 

合成群组时,查询数据库的次数确定合成群组所需的时间量。除了模拟的长度和模拟中出现的人数外,查询的数量还受几个因素的影响,其中包括:

 

·示例人群与模拟人群之间的相似性。

·数据库中存在的各种示例。

·障碍的存在。

 

示例人群和模拟人群之间的相似性决定了示例和查询之间匹配的质量。使用稀疏人群数据库合成密集人群可能最多只会导致部分匹配,留下不匹配的查询对人产生影响。结果,每个模拟的人查询数据库的次数增加。然而,这并不意味着输入和合成人群中应该出现相同数量的人。只要输入中存在局部密度与模拟人群相似的示例,就可能找到足够相似的示例。

 

数据库中示例的多样性既影响行为的丰富性,也影响合成人群所需的时间量。从行为一致的群组创建示例数据库,显示很少或没有不同的行为,结果导致群组的行为大致相同。为了说明这一点,我们创建了一个小型的合成数据库,在这个数据库中,人们以恒定速度行走,直线行走,不停下来,进行90度或U形转弯。所得到的合成人群(可以在伴随的视频中看到)不会显示比上述行为的串联更复杂的任何行为。

 

缺乏多样性会影响模拟的整体运行时间。模拟的人使用示例引导它穿过人群,本质上是告诉它如何在给定的配置中表现。如果数据库没有充分覆盖配置空间,则查询不能充分匹配的次数会增加,从而生成越来越多的查询。

 

障碍的存在也会影响所需的计算时间。当两个人即将发生碰撞时,双方都会尽力避免即将发生的碰撞,这是一种相互理解。我们的模拟试图模仿这种行为。匹配函数考虑了每个影响人在即将到来的帧中所遵循的路径,如果此路径不可用,则将其外推。通过这样做,当模拟的人查询数据库时,其实质上预测其有影响力的人的路径,并搜索与预测的路径相匹配的示例。在即将发生冲突的两个人中,第一个查询数据库的人预测另一个人的路径。然而,第二个人知道第一个人的确切路径,因为他刚刚查询了数据库。因此,他的匹配例子将引导他远离碰撞。

 

障碍的问题是它们不会对人做出反应。它们不会远离迎面而来的人,也不会有助于避免碰撞。但是,如果数据库中存在避免冲突的示例,则最终会找到它们并避免冲突,但可能需要几个查询才能做到这一点。

 

  1. Results

我们的示例数据库的大小在数万个示例中运行,因此为每个查询检查整个数据库的强力搜索是不切实际的。我们采用近似最近邻搜索,以便快速找到最佳示例,并限制每个查询检查的示例数量。另一方面,在当前实现中,以蛮力方式实现对冲突避免路径的搜索。在这种非优化方法中,在选择一条路径之前检查所有可能的路径。尽管这种方法显著降低了模拟速度,但从大量的选项中选择冲突避免路径,并避免重复。

 

我们的技术需要调整几个参数,例如轨迹的最大长度或相似函数的缩放因子。人们可以将其视为高维搜索空间中的优化问题。通过运行不同的模拟,我们独立地调整了每个参数,生成了产生所需结果的集合。

 

我们用我们的技术合成了四种不同的人群。在所有情况下,我们创建的模拟都是2分钟长,以每秒25帧的速度运行,这相当于3000个合成帧。使用稀疏人群输入视频合成前三个人群。这个视频在每帧中平均有5-6个人,包括墙壁、门和路缘等功能。我们扩展了视频中出现的环境,添加了一座额外的建筑。合成的人群平均每帧由2人、8人和20人组成。只有两个人组成的人群实时运行。8人人群需要大约6分钟的计算(这是3000帧的平均约8fps),而20人人群需要大约10分钟(平均约5fps)。

 

我们使用密集人群输入视频合成了平均每帧由40人组成的密集人群,每帧具有大致相同的人数。这个模拟需要一个小时来合成3000帧。较长的计算时间源于出现在数据库中的80k示例没有正确覆盖配置空间的事实。结果,需要冲突避免路径的次数增加,降低了模拟的速度。在密集的人群中,配置空间的维度很高,因为在每个查询和示例中都出现了许多影响因素。对于密集的人群,5分钟的输入视频不足以生成适当的示例数据库,这将加速模拟。

 

所有模拟都是无碰撞的,并在个人和组级别上显示合理的行为。关于合成人群的剪辑,我们参考了附带的视频。不同的行为在人群中是明显的;例如行走方向的改变(见图7(上)),平滑的碰撞避免(见图7(下)),组行为等。此外,模拟代理从示例中学习如何与环境的各种功能相关联。例如,进入建筑物或站着看商店橱窗(图1)。每个模拟代理的轨迹由真实人群中行走的真实人所采取的路径段的级联组成。当查询与示例匹配时,其行走速度将与示例轨迹匹配。当轨迹段被复制到模拟代理时,它将与其行走方向对齐。因此,模拟中速度和方向的任何更改都是从示例集中的类似实例中派生出来的。我们的模拟技术将现有的轨迹串联起来,通过这样做,出现了可信的人群行为。

 

  1. Conclusions and Future Work

在本文中,我们提出了一种新的人群模拟技术。我们的方法是数据驱动的,使用从真实人群的视频中提取的轨迹来驱动模拟代理。这是一个基于示例的反应式模拟,其中代理对其周围环境的配置做出反应。一个示例定义了对特定配置的反应,因此隐含地定义了反应规则或行为。我们的代理所显示的各种行为仅受示例数量的限制。

 

在我们的方法中,除了定义时空影响因素外,没有对代理的行为做出任何假设。通过使用连续的基于距离的影响函数,我们为每个这样的因素分配相对权重。因此,我们的代理作为一个整体对配置作出反应,而不是独立地对每个因素作出反应。我们的影响函数是通用的,可以很容易地结合到基于规则的模拟中。在这样的模拟中,该函数可用于确定如何在对不同影响因素作出反应的规则之间进行混合。

 

我们的系统是灵活的,可以很容易地模拟不同类型的人群。通过改变输入实例,引入不同的反应行为,从而改变模拟人群的行为。可以合并来自不同输入的示例,允许不同类型的代理共享相同的环境。此外,模拟是可伸缩的,其中可以更改群组的全局密度,只要代理周围的局部密度保持与输入示例相对相似。

 

在这项工作中,模拟的代理不是试图实现特定的目标,也不是到达特定的位置。进一步研究的一个有趣途径是将认知模型合并到我们的数据驱动模拟中,从而指导匹配函数搜索将指导代理朝着其目标前进的示例。另一个有趣的进一步研究的途径是找到影响和匹配函数的最佳定义,以及它们的参数组合。

https://www.youtube.com/watch?v=obe5uO56cTI

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值