Conda / mamba 安装使用图文详解(2025版)

本文介绍conda作为包管理和环境管理工具的功能,包括安装、配置、使用方法及常见问题解决。支持多种语言如Python、R等,并可在Windows、macOS和Linux上运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

  • 开源包管理系统和环境管理系统 ,包括多种语言的包安装,运行,更新,删除,最重要的是可以解决包依赖问题
  • 支持语言包括 Python,R,Ruby,Lua,Scala,Java,JavaScript,C / C ++,FORTRAN
  • 支持在Windows,macOS和Linux上运行
  • Conda可以构建不同的环境,同时可以对环境进行保存,加载和切换操作
  • conda包和环境管理器包含在所有版本的Anaconda和Miniconda中

conda 加速版 Mamba

Mamba 是基于 C 实现的 conda 功能,尤其在执行安装命令,解决环境依赖等应用场景中,可以有效缩短运行时间。
!!! 如果不是老版本的包,都建议用 mamba 来安装,可以减少很多时间。使用以下方式是为了兼容一些包的旧版本安装方式,避免出现bug。也可以用官方直接安装 mamba。

  • 安装:
    • 更新基础环境:conda update -n base conda
    • conda install -n base conda-libmamba-solver
    • conda config --set solver libmamba
    • conda install mamba -n base -c conda-forge -y
  • 以下运行的命令都可以将 conda 替换为 mamba 来运行,目前本文中提到的 conda 所有命令都支持替换为 mamba 来加速运行。
  • 比如:
    • mamba install python=3.9
    • mamba create --name python3.9 python=3.9
    • mamba activate python3.9

安装

Linux

  • 下载
  • Linux 64位:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2023.09-0-Linux-x86_64.sh

清华镜像https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
anaconda:https://www.anaconda.com/products/individual
minicondahttps://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
miniconda 与 anaconda 的区别:minicoda 是只有conda基础功能的软件,相当于毛坯房。anaconda 除了 minicoda 功能外,加入了大量常用的包,相当于精装房。

  • 安装

  • Linux: bash Anaconda3-2021.11-Linux-x86_64.sh

  • 配置环境

  • 查看是否安装成功,如果安装没问题会显示conda版本号

    conda --version

  • 配置镜像

    Linux:vim ~/.condarc

    Windows:文件在 C:\Users\你的用户名\.condarc

    如果没有.condarc文件,可以先执行 conda config --set show_channel_urls yes 生成该文件

    替换原文件内容为:

    channels:
      - defaults
    show_channel_urls: true
    default_channels:
      - http://mirrors.aliyun.com/anaconda/pkgs/main
      - http://mirrors.aliyun.com/anaconda/pkgs/r
      - http://mirrors.aliyun.com/anaconda/pkgs/msys2
    custom_channels:
      conda-forge: http://mirrors.aliyun.com/anaconda/cloud
      msys2: http://mirrors.aliyun.com/anaconda/cloud
      bioconda: http://mirrors.aliyun.com/anaconda/cloud
      menpo: http://mirrors.aliyun.com/anaconda/cloud
      pytorch: http://mirrors.aliyun.com/anaconda/cloud
      simpleitk: http://mirrors.aliyun.com/anaconda/cloud
    
  • 查看是否配置成功 conda info,如果没问题,我们可以看到配置的镜像信息

  • 清除缓存 conda clean -i

  • 新建环境

    conda create --name your_env_name

    your_env_name是环境名称,对环境的操作后面会详述

  • 激活环境

    conda activate

  • pip 镜像配置

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pip -U
pip config set global.index-url https://pypi.douban.com/simple

其他镜像地址

镜像地址
阿里云https://mirrors.aliyun.com/pypi/simple/
豆瓣https://pypi.douban.com/simple/
清华大学httpss://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学https://pypi.mirrors.ustc.edu.cn/simple/
华中科技大学https://pypi.hustunique.com/

Windows

  • Windows:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2023.09-0-Windows-x86_64.exe
  • Windows:根据图形界面一路 Next
  • 需要注意:
    • 默认路径是 C 盘,如果空间已经捉襟见肘,建议放在其他盘
    • 默认是配置好环境变量并初始化,但是可能因为系统权限等其他原因需要配置环境变量
      • win 键 - 我的计算机 - 属性 - 高级系统设置 - 环境变量配置,不同 Windows 版本位置不一样,建议搜索对于版本配置方法
      • 环境变量位置一般在 anaconda 根目录的 scripts 中,比如我的是 D:\Python\anaconda3\Scripts
      • 对于 cmd 和 powershell,运行命令 conda init 初始化
      • 对于 git bash,运行命令 conda init bash 初始化
  • 其他同 Linux

使用

文档:https://conda.io/en/latest/

包管理功能

  • 搜索包

    • 查看特定包

      conda search fastqc

  • 安装包

    • 安装特定包(需要确认安装,可以看到conda已经将包依赖问题,环境问题已经解决)

      conda install fastqc

      mark

    • 安装特定版本的软件包(查看软件版本可以使用conda search fastqc

      conda install fastqc=0.11.6

      mark

    • 安装多个包

      conda install fastqc multiqc

  • 包更新

    • 更新特定包

      conda update fastqc

    • 更新Python

      conda update python

    • 更新conda本身及Anaconda元数据包

      conda update conda

      conda update anaconda

    • 防止包更新

      conda update fastqc --no-pin

      在环境的conda-meta目录中,添加一个名为pinned的文件,其中包含您不想更新的软件包列表。

  • 包删除

    • 删除当前环境中的包

      conda remove pkg_name

    • 删除特定环境中的包

      conda remove -n env_name pkg_name

    • 删除多个包

      conda remove pkg_name1 pkg_name2

    • 确认删除的包

      conda list

  • 包列表

    • 当前环境所有包

      conda list

    • 特定环境所有包

      conda list -n env_name

环境管理功能

  • 创建环境

    • 创建特定名字的环境

      conda create -n env_name

    • 使用特定版本的Python创建环境

      conda create -n env_name python=3.4

    • 使用特定包创建环境

      conda create -n env_name pandas

    • 用 environment.yml 配置文件创建环境

      conda env create -f nvironment.yml

      environment.yml 文件:

      name: stats2
      channels:
        - javascript
      dependencies:
        - python=3.4   # or 2.7
        - bokeh=0.9.2
        - numpy=1.9.*
        - nodejs=0.10.*
        - flask
        - pip:
          - Flask-Testing
      
  • 导出环境文件environment

    • 导出environment.yml环境文件

      • 激活需要导出文件的环境

        conda activate env_name

      • 导出

        conda env export > environment.yml

  • 激活环境

    conda activate env_name

  • 停用环境

    conda deactivate env_name

  • 查看环境(当前环境用*表示)

    conda info -envs
    conda env list

    mark

  • 删除环境

    conda remove -n env_name --all

  • 构建相同的conda环境(不同机器间的环境复制)

    • 激活需要导出配置文件的环境

      conda list --explicit > files.txt

    • 在同系统的不同机器执行

      conda create --name env_name -f files.txt

  • 克隆环境(同一台机器的环境复制

    conda create --name clone_env_name --clone env_name

渠道管理

  • 添加新渠道到顶部,最高优先级

    conda config --add channels new_channel

    或者conda config --prepend channels new_channel

  • 添加新渠道到底部,最低优先级

    conda config --append channels new_channel

卸载

直接卸载会有配置文件,注册表等残留

  • conda install anaconda-clean
  • anaconda-clean --yes
  • 进入安装目录执行 Uninstall_Anaconda3.exe

实例

创建不同版本的Python环境

  • Python 3.6 的 Anaconda 环境

    conda create -n py36 python=3.6 anaconda

  • Python 2.7 的 Anaconda 环境

    conda create -n py27 python=2.7 anaconda

报错解决

1、conda activate 后报找不到路径错误
解决:修改用户名为英文,参考:https://blog.csdn.net/weixin_44815511/article/details/121549369
2、安装或卸载anaconda 后打不开cmd
解决:打开注册表,Computer\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Command Processor,删除 AutoRun 项

Python是一种流行的编程语言,常被用于各种软件开发和数据科学领域。Anaconda是一个流行的Python数据科学平台,它包含了很多数据科学工具和库,方便使用。PyCharm是一款Python集成开发环境(IDE),提供了强大的代码编辑、调试、管理和预览功能。 以下是PythonAnaconda和PyCharm的安装教程。 Python安装教程: 1.访问官网:https://www.python.org/downloads/。 2.选择需要下载的python本。 3.在下载页面中选择适合你的操作系统,例如Windows 或 macOS。 4.下载安装程序,双击运行。 5.在安装向导中,勾选将Python添加到您的PATH。 6.设置安装路径和其他选项,按照提示点击“安装”。 7.等待安装完成。 8.完成安装后,在终端窗口输入python,如果出现Python本信息,则代表安装成功。 Anaconda安装教程: 1.访问官网:https://www.anaconda.com/products/individual。 2.选择需要下载的Anaconda本。 3.在下载页面中选择适合你的操作系统,例如Windows 或 macOS。 4.下载安装程序,双击运行。 5.按照提示安装Anaconda。 6.在安装向导中,勾选将Anaconda添加到您的PATH。 7.设置安装路径和其他选项,按照提示点击“安装”。 8.等待安装完成。 9.完成安装后,在终端窗口输入conda,如果出现conda本信息,则代表安装成功。 PyCharm的安装教程: 1.访问官网:https://www.jetbrains.com/pycharm/download/。 2.选择需要下载的PyCharm本。 3.在下载页面中选择适合你的操作系统,例如Windows 或 macOS。 4.下载安装程序,双击运行。 5.按照提示安装PyCharm。 6.在安装向导中,勾选将PyCharm添加到您的PATH。 7.设置安装路径和其他选项,按照提示点击“安装”。 8.等待安装完成。 9.完成安装后,打开PyCharm,创建一个新的项目开始编写代码。 总结: 以上是PythonAnaconda和PyCharm的安装教程。无论想要进行软件开发还是数据科学,学习一门编程语言,并正确安装与配置相应的工具,是很关键的第一步。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白墨石

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值