视觉和激光雷达融合SLAM综述-最新2020

视觉和激光雷达融合SLAM综述

A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping


先介绍基本SLAM原理,再视觉SLAM,再激光SLAM,最后介绍两者融合SLAM。

Section 1 : 引言

Section 2: SLAM

1. SLAM的概率方法解释
2. 基于图的SLAM框架

Section 3: V-SLAM

1. Feature Based SLAM
2. Direct SLAM
3. RGB-D SLAM
4. Event Camera SLAM
5. Conclusions

视觉SLAM在光线改变或者低纹理环境都容易出错
在这里插入图片描述

Section 4: LiDAR Based SLAM

1. 基于激光雷达的主要解决方案是扫描匹匹配方法,然后是图优化,每个节点表示一个传感器测量,边表示观测产生的约束
2. 占用栅格地图和粒子滤波器
3. 回环检测全局优化

在这里插入图片描述

Section 5: LIDAR-Camera Fusion

1. 即使V-SLAM提供准确的结果,也存在一些缺陷,如:单目尺度漂移,双目深度估计精度不高,户外RGBD稠密重建困难等。
2. 激光雷达主要优点在于测距和制图方面非常准确。
3. 使用以上两者融合将大大提升SLAM性能,但是标定和融合比较困难。
4. 标定

相机和雷达外参,传统棋盘格标定[62],CNN标定(在线标定)[63]。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值