Transformer的前世今生 day10(Transformer编码器、解码器)

本文介绍了深度学习中的ResNet残差网络如何通过快速通道解决模型复杂度过大问题,以及Transformer编码器和解码器的工作原理,包括Self-Attention、FeedForward子层和masking策略,以生成更优的词向量和翻译结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前情提要

ResNet(残差网络)

  • 由于我们加更多层,更复杂的模型并不总会改进精度,可能会让模型与真实值越来越远,如下:
    在这里插入图片描述
  • 我们想要实现,加上一个层把并不会让模型变复杂,即没有它也没关系,于是我们将残差块加入快速通道来实现,如下:
    • g(x)作为激活函数的输入,x作为模型的输入,f(x)为加上的层的输出,那么原本g(x) = f(x)
    • 加入残差块x后,g(x) = f(x) + x,表明即使f(x)没有得出很好的结果,那我也可以直接用x来作为激活函数的输入,绕过f(x)
      在这里插入图片描述
  • 残差块使很深的网络更加容易训练,因为我们总可以走快速通道让模型忽略掉某些层,即我们可以先训练容易的层

Transformer编码器

  • 编码器包括两个子层:Self-Attention、Feed Forward,缩略图如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丿罗小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值