Few-shot learning经典算法之PyTorch实现

最近也在学习Few-shot learning,用Few-shot learning方法作图像分类,下面对Few-shot learning经典算法及其PyTorch实现作一下梳理:

MAML:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

PyTorch code:

1. https://github.com/dragen1860/MAML-Pytorch

2. https://github.com/katerakelly/pytorch-maml

 

MatchingNet: Matching Networks for One Shot Learning

PyTorch code:

1. https://github.com/gitabcworld/MatchingNetworks

 

PrototypicalNet:Prototypical Networks for Few-shot Learning

PyTorch code:

1. https://github.com/jakesnell/prototypical-networks

 

RelationNet:Learning to Compare: Relation Network for Few-Shot Learning

PyTorch code:

1. https://github.com/floodsung/LearningToCompare_FSL

 

Facebook AI Research (FAIR)巨作SGM:Low-shot Visual Recognition by Shrinking and Hallucinating Features

PyTorch code:

1. https://github.com/facebookresearch/low-shot-shrink-hallucinate

 

GPShot:Deep Kernel Transfer in Gaussian Processes for Few-shot Learning

PyTorch code (涵盖了MAML、MatchingNet、PrototypicalNet和RelationNet):

1. https://github.com/BayesWatch/deep-kernel-transfer

 

Few-shot learning结合self-supervised learning方法:

Boosting Few-Shot Visual Learning with Self-Supervision

PyTorch code:

1. https://github.com/valeoai/BF3S

Few-shot learning与self-supervised learning相结合相关的课题,目前炒的比较火,对这方面感兴趣的建议好好研究一下BF3S的论文和代码,会有很大收获。

先总结到这里吧,后续会不断更新!

### 回答1: few-shot learning代码是指用于实现few-shot学习的程序代码。few-shot学习是一种机器学习技术,旨在通过少量的样本数据来训练模型,以实现对新数据的分类或回归预测。在实际应用中,由于数据量有限,few-shot学习具有广泛的应用前景。目前,有许多开源的few-shot学习代码库可供使用,如PyTorch、TensorFlow等。这些代码库提供了各种few-shot学习算法实现,包括基于元学习的方法、基于生成模型的方法等。 ### 回答2: Few-shot learning 是一种利用少量样本数据来完成分类任务的学习方式,它能够在训练集中只有非常少量的样本数据的情况下,对新样本进行准确分类。在实际应用中,我们很难获得大量标注数据用来训练分类器,因此 Few-shot learning 是一个非常重要的研究方向。 在代码实现方面,Few-shot learning 需要考虑一些关键问题。首先是如何从少量样本中学习出有效的特征表示。为了解决这个问题,我们可以借助已有的预训练模型提取特征,例如 VGG、ResNet、DenseNet 等,也可以使用一些特定的模型,例如 Siamese 或 Prototypical Networks。 其次是如何定义相似度度量方法。因为 Few-shot learning 中的样本数量非常少,我们需要考虑如何利用已知的样本来计算未知样本与已知样本之间的相似度。常用的相似度度量方法包括欧式距离、余弦相似度、马氏距离、汉明距离等。 最后是如何进行分类。在 Few-shot learning 中,我们需要使用少量的样本来对新的未知样本进行分类。这个过程需要考虑如何选择合适的分类器,例如 k-近邻分类器和支持向量机分类器等。同时,我们也需要考虑如何设计模型结构和计算过程,以提高分类器的准确率和鲁棒性。 总结来说,Few-shot learning 是一个非常重要的研究领域,它能够利用少量样本进行分类任务,为实际应用带来了很大的便利。在实际应用中,我们需要考虑如何利用已有的模型和算法来处理数据,以提高分类器的性能。 ### 回答3: Few-shot learning是指在面对少量有标注数据的情况下,通过利用已有的知识,来训练出能够准确推断新样本标签的模型。现在先介绍一下few-shot learning中最经典的模型之一,即Prototypical Network。 其中,Prototypical Network主要涉及到的概念包括:“prototype”、“episode”和“embedding”。 “prototype”是指每个类别的中心点,可以用来度量每个样本点和不同类别的相似度。在模型的训练过程中就是通过计算每一个类别内所有样本的平均值来得到prototype。 “episode”是指few-shot learning任务中的一次训练过程,每次从大量数据中采出少量不同于已有类别的样本,与已有类别的样本混合,形成episode。在实际的few-shot learning中,episode通常包含类别数、每类样本数以及查询数等统计信息。 “embedding”指样本的特征表示,可以看做经过特征提取后得到的一个向量表示。在使用Prototypical Network时,需要把样本的原始图像数据转换成每个样本的embedding,用来计算每个样本到不同prototype的距离。 下面是经典Prototypical Network在Pytorch中的代码实现: 首先,导入包和定义模型所需的各种函数。 ```Python import torch import torch.nn as nn def euclidean_dist(x, y): """ 计算两个向量之间的欧几里得距离 """ return torch.pow(x, 2).sum(1, keepdim=True) + torch.pow(y, 2).sum(1, keepdim=True).t() - 2 * torch.matmul(x, y.t()) def euclidean_metric(x, y): """ 计算两个向量之间的距离,用于计算相似度 """ return -torch.sqrt(torch.sum(torch.pow(x - y, 2))) ``` 然后,定义Prototypical Network模型。 ```Python class ProtoNet(nn.Module): def __init__(self, x_dim=3, h_dim=64, z_dim=64): super(ProtoNet, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(x_dim, h_dim, kernel_size=3, stride=1), nn.BatchNorm2d(h_dim), nn.ReLU(), nn.Conv2d(h_dim, h_dim, kernel_size=3, stride=1), nn.BatchNorm2d(h_dim), nn.ReLU(), nn.Conv2d(h_dim, h_dim, kernel_size=3, stride=1), nn.BatchNorm2d(h_dim), nn.ReLU(), nn.Conv2d(h_dim, z_dim, kernel_size=4, stride=1), nn.BatchNorm2d(z_dim), nn.ReLU() ) def forward(self, x): x = self.encoder(x) x = torch.mean(x.view(x.size(0), x.size(1), -1), dim=2) return x ``` 接着,定义训练过程。 ```Python def train_step(model, optimizer, train_loader, device): """ 在一个episode里面对模型进行训练 """ model.train() total_loss = 0 total_acc = 0 for batch_idx, (data, target) in enumerate(train_loader): n_classes = len(torch.unique(target)) data, target = data.to(device), target.to(device) optimizer.zero_grad() z = model(data) z_dim = z.shape[-1] z_proto = torch.empty(n_classes, z_dim, device=device) for i in range(n_classes): z_proto[i] = torch.mean(z[target == i], dim=0) dists = euclidean_dist(z, z_proto) log_p_y = nn.functional.log_softmax(-dists, dim=1).view(n_classes, -1, dists.size(-1)) target_one_hot = torch.zeros(n_classes, log_p_y.size(1), device=device).scatter_(0, target.view(n_classes, -1), 1) loss = -(log_p_y * target_one_hot).sum() acc = torch.mean((torch.argmax(log_p_y, dim=2) == target).float()) total_loss += loss.item() total_acc += acc.item() loss.backward() optimizer.step() return total_loss, total_acc / (batch_idx + 1) ``` 最后,定义测试过程。 ```Python def test(model, test_loader, device): """ 在测试数据集上测试模型性能 """ model.eval() total_acc = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): n_classes = len(torch.unique(target)) data, target = data.to(device), target.to(device) z = model(data) z_dim = z.shape[-1] z_proto = torch.empty(n_classes, z_dim, device=device) for i in range(n_classes): z_proto[i] = torch.mean(z[target == i], dim=0) dists = euclidean_dist(z, z_proto) log_p_y = nn.functional.log_softmax(-dists, dim=1).view(n_classes, -1, dists.size(-1)) acc = torch.mean((torch.argmax(log_p_y, dim=2) == target).float()) total_acc += acc.item() return total_acc / (batch_idx + 1) ``` 在以上代码的基础上,只要提供相应的训练集和测试集,即可用来训练和测试few-shot learning模型了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值