最近也在学习Few-shot learning,用Few-shot learning方法作图像分类,下面对Few-shot learning经典算法及其PyTorch实现作一下梳理:
MAML:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
PyTorch code:
1. https://github.com/dragen1860/MAML-Pytorch
2. https://github.com/katerakelly/pytorch-maml
MatchingNet: Matching Networks for One Shot Learning
PyTorch code:
1. https://github.com/gitabcworld/MatchingNetworks
PrototypicalNet:Prototypical Networks for Few-shot Learning
PyTorch code:
1. https://github.com/jakesnell/prototypical-networks
RelationNet:Learning to Compare: Relation Network for Few-Shot Learning
PyTorch code:
1. https://github.com/floodsung/LearningToCompare_FSL
Facebook AI Research (FAIR)巨作SGM:Low-shot Visual Recognition by Shrinking and Hallucinating Features
PyTorch code:
1. https://github.com/facebookresearch/low-shot-shrink-hallucinate
GPShot:Deep Kernel Transfer in Gaussian Processes for Few-shot Learning
PyTorch code (涵盖了MAML、MatchingNet、PrototypicalNet和RelationNet):
1. https://github.com/BayesWatch/deep-kernel-transfer
Few-shot learning结合self-supervised learning方法:
Boosting Few-Shot Visual Learning with Self-Supervision
PyTorch code:
1. https://github.com/valeoai/BF3S
Few-shot learning与self-supervised learning相结合相关的课题,目前炒的比较火,对这方面感兴趣的建议好好研究一下BF3S的论文和代码,会有很大收获。
先总结到这里吧,后续会不断更新!

1万+

被折叠的 条评论
为什么被折叠?



