Few-shot learning经典算法之PyTorch实现

最近也在学习Few-shot learning,用Few-shot learning方法作图像分类,下面对Few-shot learning经典算法及其PyTorch实现作一下梳理:

MAML:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

PyTorch code:

1. https://github.com/dragen1860/MAML-Pytorch

2. https://github.com/katerakelly/pytorch-maml

 

MatchingNet: Matching Networks for One Shot Learning

PyTorch code:

1. https://github.com/gitabcworld/MatchingNetworks

 

PrototypicalNet:Prototypical Networks for Few-shot Learning

PyTorch code:

1. https://github.com/jakesnell/prototypical-networks

 

RelationNet:Learning to Compare: Relation Network for Few-Shot Learning

PyTorch code:

1. https://github.com/floodsung/LearningToCompare_FSL

 

Facebook AI Research (FAIR)巨作SGM:Low-shot Visual Recognition by Shrinking and Hallucinating Features

PyTorch code:

1. https://github.com/facebookresearch/low-shot-shrink-hallucinate

 

GPShot:Deep Kernel Transfer in Gaussian Processes for Few-shot Learning

PyTorch code (涵盖了MAML、MatchingNet、PrototypicalNet和RelationNet):

1. https://github.com/BayesWatch/deep-kernel-transfer

 

Few-shot learning结合self-supervised learning方法:

Boosting Few-Shot Visual Learning with Self-Supervision

PyTorch code:

1. https://github.com/valeoai/BF3S

Few-shot learning与self-supervised learning相结合相关的课题,目前炒的比较火,对这方面感兴趣的建议好好研究一下BF3S的论文和代码,会有很大收获。

先总结到这里吧,后续会不断更新!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值