FIR滤波器抽头系数和冲激响应的关系

在这里插入图片描述

图1. FIR滤波器结构示意图

  设输入序列为 x ( n ) x(n) x(n),抽头系数为 ω ( m ) \omega(m) ω(m),则输出序列可表示为
y ( n ) = ∑ m ω ( m ) x ( n − m Δ ) (1) y(n)=\sum_m \omega(m)x(n-m\Delta) \tag{1} y(n)=mω(m)x(nmΔ)(1)
  其中, Δ \Delta Δ表示延迟单元。若 Δ = 1 \Delta=1 Δ=1,则表示图1中是以一个采样点为单位进行延迟的。若 Δ ≠ 1 \Delta \neq 1 Δ=1,则表示延迟单元不等于一个采样点,比如在FFE均衡器中,延迟单元通常为一个符号周期,此时 Δ \Delta Δ等于一个符号包含的采样点数。
  设FIR滤波器的冲激响应为 h ( n ) h(n) h(n),则滤波器输出

### 滤波器抽头系数的概念 #### 定义 滤波器抽头系数是指在有限冲激响应FIR滤波器中用于加权输入信号样本的一组数值。这些系数决定了滤波器的频率特性,从而影响其对不同频段信号的处理方式[^2]。 #### 作用 1. **决定频率响应** 抽头系数直接关系滤波器的幅频特性相位特性。通过调整这些系数,可以使滤波器具有所需的通带、过渡带以及阻带特性。例如,在低通滤波器的设计过程中,适当选取抽头系数能够确保特定范围内的频率成分得以保留,而高于截止频率的部分则被衰减掉[^3]。 2. **控制线性相位特性** 对于许多应用场景而言,保持良好的线性相位是非常重要的。FIR滤波器可以通过精心设计抽头系数来获得理想的线性相位属性,这对于音频处理等领域尤为重要,因为它能防止因非线性相位引起的群延迟失真现象[^1]。 3. **实现不同的滤波效果** 不同类型的窗函数或其他优化算法可用于计算抽头系数,进而得到具备不同特点的滤波器。比如利用汉明窗(Hamming Window)或凯泽窗(Kaiser Window),可以在一定程度上平衡主瓣宽度与旁瓣抑制之间的矛盾;采用等波纹逼近(Equiripple Approximation)技术,则可使最大误差在整个工作区间内均匀分布。 4. **硬件资源消耗考量** 当在一个具体的物理平台上部署FIR滤波器时,如现场可编程门阵列(FPGA), 需要考虑由指定数量级数所带来的逻辑单元占用情况。较高的阶次意味着更精确的表现但也伴随着更多的资源开销。因此,在满足性能指标的前提下尽可能降低复杂度成为了一项重要任务。 ```python import numpy as np from scipy.signal import firwin # 设计一个简单的低通FIR滤波器作为例子展示如何获取抽头系数 numtaps = 50 # 设置滤波器长度即抽头数目 cutoff_hz = 0.2 # 归一化后的截至频率(相对于奈奎斯特率) coefficients = firwin(numtaps=numtaps, cutoff=cutoff_hz) print("The filter coefficients are:", coefficients) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值