分析系统特性的常用方法是给系统一定的输入(激励)信号,观察系统的输出情况。这种方法将系统当成一个黑盒,不care系统内部的具体结构,只关心系统的行为特性。常用的输入信号包括冲激信号、阶跃信号、脉冲信号等,对应的系统输出分别称为冲激响应、阶跃响应和脉冲响应。下面对这几类响应进行详细说明。
1、冲激响应
冲激信号是一种理论上脉宽无限窄的脉冲信号,其连续和离散表达式分别为:
δ(t)={ 1,t=00,others,δ[n]={ 1,n=00,others
\delta(t)=\left\{\begin{matrix}\
1,t = 0 \\
0,others
\end{matrix}\right.,
\delta[n]=\left\{\begin{matrix}\
1,n = 0 \\
0,others
\end{matrix}\right.
δ(t)={ 1,t=00,others,δ[n]={ 1,n=00,others

如上图所示,冲激信号只在零时刻取值不为0。冲激信号的傅里叶变换为:
F(ω)=F(δ(t))=∫−∞∞δ(t)e−jωtdt=1
F(\omega)=\mathcal{F}(\delta(t))=\int_{-\infty}^{\infty}\delta(t)e^{-j\omega t}dt=1
F(ω)=F(δ(t))=∫−∞∞δ(t)e−jωtdt=1
即在时域中变化异常剧烈的冲激信号包含幅度相等的所有频率分量。这种谱称为“均匀谱”或“白色谱”。将上述冲激信号作为系统输入,得到的系统输出即为系统的冲激响应,通常记为h(t)h(t)h(t)。显然,若系统的频响为H(ω)H(\omega)H(ω),则系统输出信号的频谱可表示为:
Y(ω)=F(δ(t))H(ω)=F(h(t))=H(ω)
Y(\omega)=\mathcal{F}(\delta(t))H(\omega)=\mathcal{F}(h(t))=H(\omega)
Y(ω)=F(δ(t))H(ω)=F(h(t))=H(ω)
即系统冲激响应的傅里叶变换即为系统频响——正是因为冲激响应和系统频响的对应关系,冲激响应才成为描述系统特性的最重要指标之一。
2、阶跃响应
阶跃信号通常表示为u(t)u(t)u(t),其连续和离散表达式分别为:
u(t)={ 1,t≥00,others,u[n]={ 1,n≥00,others
u(t)=\left\{\begin{matrix}\
1,t \geq 0 \\
0,others
\end{matrix}\right.,
u[n]=\left\{\begin{matrix}\
1,n \geq 0 \\
0,others
\end{matrix}\right.
u(t)={ 1,t≥00,others,u[n]={ 1,n≥00,others

如上图所示,阶跃信号显然不满足绝对可积条件(在定义域上绝对值积分存在且有限),但是由于阶跃信号又可表示为u(t)=12+12sign(t)u(t)=\frac{1}{2}+\frac{1}{2}sign(t)u(t)=21+21sign(t),其中,sign(t)sign(t)sign(t)表示符号函数。所以阶跃信号的傅里叶变变换仍然是存在的,具体地:
F(u(t))=F(12+12sign(t))=F(12)+F(12sign(t))=πδ(ω)+1jω
\mathcal{F}(u(t))=\mathcal{F}(\frac{1}{2}+\frac{1}{2}sign(t))=\mathcal{F}(\frac{1}{2})+\mathcal{F}(\frac{1}{2}sign(t))=\pi \delta(\omega)+\frac{1}{j\omega}
F(u(t))=F(21+21sign(t))=F(21)+F(21sign(t))=πδ(ω)+jω1

将上述阶跃信号作为系统输入,得到的系统输出即为系统的阶跃响应。从图3可知,阶跃信号频谱的高频成分衰减很快,高频分量的衰减会导致边沿变缓,所以阶跃响应常用于推导系统的上升时间。
3、脉冲响应
若一个脉冲信号的脉宽为BBB(单位:s),则其对应的离散和连续表达式分别为
p(t)={ 1,0≤t<B0,others,p[n]={ 1,0≤n<K0,others
p(t)=\left\{\begin{matrix}\
1,0 \leq t<B \\
0,others
\end{matrix}\right.,
p[n]=\left\{\begin{matrix}\
1,0 \leq n <K \\
0,others
\end{matrix}\right.
p(t)={ 1,0≤t<B0,others,p[n]={ 1,0≤n<K0,others
其中KKK表示脉宽时长内对应的采样点数K=BfsK=Bf_sK=Bfs。下图为脉冲信号示意图,可见冲激信号是脉冲信号脉宽趋近于0时的特例。

上述脉冲信号的傅里叶变换为:
P(ω)=Bsin(ωB/2)ωB/2ejωB/2=Sa(ωB/2)
P(\omega)=B\frac{sin(\omega B/2)}{\omega B/2}e^{j\omega B/2}=Sa(\omega B/2)
P(ω)=BωB/2sin(ωB/2)ejωB/2=Sa(ωB/2)
其频谱示意图如下

从上图可见,矩形脉冲信号频谱以Sa(ωB/2)Sa(\omega B/2)Sa(ωB/2)的规律变化,分布在无限宽的频率范围上,但是其主要信号能量集中分布在f=0−1/Bf=0-1/Bf=0−1/B范围内,因而,通常认为这种信号的频率范围近似为1/B1/B1/B。
以上述脉冲信号为系统输入得到的系统输出即为系统的脉冲响应。由于很多高速串行通信中所用信号(如NRZ,PAM4等)都可以拆成多个脉冲信号的叠加,因此从脉冲响应中可以推导实际信号过系统后的数据,故脉冲响应在高速串行通信的仿真分析中应用极广。
在线性时不变系统的假设下,系统满足叠加性和时不变性。叠加性是指:【若系统激励e1(t)e_1(t)e1(t)对应的响应为r1(t)r_1(t)r1(t),激励e2(t)e_2(t)e2(t)对应的响应为r2(t)r_2(t)r2(t)。当激励为C1e1(t)+C2e2(t)C_1e_1(t)+C_2e_2(t)C1e1(t)+C2e2(t)时,系统响应为C1r1(t)+C2r2(t)C_1r_1(t)+C_2r_2(t)C1r1(t)+C2r2(t)】。时不变性是指:【若激励e(t)e(t)e(t)对应的响应为r(t)r(t)r(t),则e(t−τ)e(t-\tau)e(t−τ)对应的响应为r(t−τ)r(t-\tau)r(t−τ)】。基于系统的叠加性和时不变性,上述三类响应可以进行相互转换。
4、冲激响应和阶跃响应的相互转换
4.1、冲激响应->阶跃响应
从之前的分析可知:
u[n]=∑n0δ[n−n0]
u[n]=\sum_{n_0}\delta[n-n_0]
u[n]=n0∑δ[n−n0]

冲激信号到阶跃信号的转换示意图如上所示,显然根据系统的叠加性和时不变性有:
δ[n]→h[n],u[n]→g[n]g[n]=∑n0h[n−n0]
\delta[n]\rightarrow h[n],u[n]\rightarrow g[n]\\
g[n]=\sum_{n_0}h[n-n_0]
δ[n]→h[n],u[n]→g[n]g[n]=n0∑h[n−n0]
即对冲激响应进行积分即可得到阶跃响应。
4.2、阶跃响应->冲激响应
对冲激信号进行积分可得到阶跃信号,但是对阶跃信号进行微分,从连续域的角度来看,并不能得到冲激信号。不过,从离散角度看,阶跃信号到冲激信号可通过下式进行转换:
δ[n]=u[n+1]−u[n]
\delta[n]=u[n+1]-u[n]
δ[n]=u[n+1]−u[n]

阶跃信号到冲激信号的转换示意图如上所示,显然根据系统的叠加性和时不变性有:
δ[n]→h[n],u[n]→g[n]h[n]=g[n+1]−g[n]
\delta[n]\rightarrow h[n],u[n]\rightarrow g[n]\\
h[n]=g[n+1]-g[n]
δ[n]→h[n],u[n]→g[n]h[n]=g[n+1]−g[n]
即原始阶跃响应延迟一个时间单元再与原始阶跃响应相减即可得到冲激响应。
5、冲激响应和脉冲响应的相互转换
冲激响应和脉冲响应的相互转换方法和冲激响应与阶跃响应的相互转换方法类似,这边不过多赘述。
6、阶跃响应和脉冲响应的相互转换
6.1、阶跃响应->脉冲响应
脉冲信号可用阶跃信号表示为:
p[n]=u[n+K]−u[n]
p[n]=u[n+K]-u[n]
p[n]=u[n+K]−u[n]

阶跃信号到脉冲信号的转换示意图如上所示,显然根据系统的叠加性和时不变性有:
u[n]→g[n],p[n]→P[n]P[n]=g[n+K]−g[n]
u[n]\rightarrow g[n],p[n]\rightarrow P[n]\\
P[n]=g[n+K]-g[n]
u[n]→g[n],p[n]→P[n]P[n]=g[n+K]−g[n]
即原始阶跃响应延迟脉冲宽度对应的时长再与原始阶跃响应相减即可得到脉冲响应。
6.2、脉冲相应->阶跃响应
阶跃信号可用脉冲信号表示为:
u[n]=∑n0p[n−Kn0]
u[n]=\sum_{n_0}p[n-Kn_0]
u[n]=n0∑p[n−Kn0]

脉冲信号到阶跃信号的转换示意图如上所示,显然根据系统的叠加性和时不变性有:
u[n]→g[n],p[n]→P[n]g[n]=∑n0P[n−Kn0]
u[n]\rightarrow g[n],p[n]\rightarrow P[n]\\
g[n]=\sum_{n_0}P[n-Kn_0]
u[n]→g[n],p[n]→P[n]g[n]=n0∑P[n−Kn0]
即将多个延迟脉宽整数倍的脉冲响应叠加即可得到阶跃响应
832

被折叠的 条评论
为什么被折叠?



