摘要
近年来,人们对脑心相互作用的研究兴趣日益浓厚。许多研究提出了新的方法来探究大脑与心脏如何通信,从而对一些神经功能有了新的认识。然而,大多数框架只关注单个脑区域与心跳动态之间的相互作用,忽略了大脑的功能网络会随着内外部需求的变化而动态变化。本研究提出了一种新的框架,通过非侵入性电生理记录评估皮层网络与心脏动态之间的功能相互作用。重点关注从EEG数据的连接矩阵中获得的动态网络指标。具体而言,本研究量化了心脏交感神经-迷走神经活动与脑网络指标(如聚类、效率、同配性和模块化)之间的耦合关系。本研究使用了开源数据集进行验证:一个涉及健康个体的情绪诱发,另一个是帕金森病患者的静息态数据。本研究结果表明,皮层网络分离与心脏动力学之间的联系能够为了解健康参与者的情绪状态和揭示帕金森病患者的网络变化提供有价值的见解。通过考虑多种网络特性,该框架可以更全面地了解脑心相互作用。本研究结果有望为开发用于诊断和认知/运动功能评估的生物标志物提供新的思路。
引言
大量临床证据表明,各种心血管、神经系统和精神障碍都可以影响大脑与心脏的相互作用。这些相互作用涉及多种身体过程,包括感觉、信息整合和活动调节,以维持体内平衡。大脑与心脏的通信是双向的,并通过不同的神经机制实现,如迷走神经和脊髓通路。实验结果表明,这些传入和传出的信息对感知、信息加工、行动和自发认知(spontaneous cognition)具有重要影响。
神经科学的最新进展突出了在研究大脑功能时采用具身视角的重要性,尤其关注大脑与心脏之间的通信。传统上,这些相互作用是通过分析心跳诱发反应来进行研究的,即大脑活动与心脏周期的同步。为了探索大脑振荡与自主神经系统之间的关系,目前已开发出多种方法,如分析相关性、方向性耦合、共现性或相位同步的信号处理技术。然而,以往的研究主要集中在特定大脑或头皮区域与心跳动态之间的相互作用,而忽略了大脑网络的动态特性及其在许多认知功能中的作用。
在这里,本文提出了一个研究脑心相互作用的新框架,以探讨大脑网络组织与心脏交感-迷走神经振荡之间的关系。该框架优于现有的先进方法,这些方法通常描述的是单个脑区与心跳动态之间的关系。相反,它通过量化大脑全局活动与心脏动态之间的复杂作用,提供了与大规模脑心相互作用相关的生物标志物。这种方法可能有助于了解某些疾病的机制;例如,在帕金森病中,由于神经系统的多个部位受损,全脑动态会受到影响。此外,帕金森病还会引发一系列并行的自主神经症状。然而,这些生理变化未必能作为确诊该疾病的明确标志。这种不确定性源于帕金森病的高度异质性和生物标志物的不可靠性,而这种不可靠性又源于我们对这些标志物背后机制的了解还不够深入。这进一步强调了探索全脑动态的必要性,以便了解脑心交互测量在揭示疾病特定方面的潜力。
在情绪加工领域,脑心交互曾被描述为内脏活动在唤醒过程中的作用。本研究框架可以进一步探索心跳动力学在情绪加工中的作用,例如揭示定义情绪状态(如愉悦度和支配度)的复杂组成部分,这些部分的神经相关性仍有待探索,并可能与大规模神经动态相对应。本研究框架作为一种概念验证,展示了如何在不同条件下研究脑心相互作用,尤其是在仅通过研究特定脑区的动态无法充分理解全局神经动态的情况下。
本研究在两个开源EEG/ECG数据集中测试了所提出的框架:一个是关于32名健康参与者的情绪诱发数据集,另一个是包含15名帕金森病患者的静息态数据集。本研究深入探讨了全局网络动态的变化,重点关注EEG连接矩阵中的效率、聚类、模块化和同配性等参数。本研究旨在了解这些动态与心脏交感-迷走神经动态波动之间的关系。研究条件包括静息态与情绪诱发之间的比较,以及健康个体与帕金森病患者静息态之间的差异。此外,本研究还考察了多巴胺药物对帕金森病患者静息状态的影响。这种干预旨在通过药物补充因多巴胺分泌细胞丧失而导致的多巴胺水平紊乱。此外,本研究还探讨了在使用多巴胺药物时,脑心耦合变化与运动症状改变之间的关系。
材料与方法
情绪诱发数据集
该数据集包括32名健康参与者(中位年龄为27岁,16名男性和16名女性)的数据。这些数据是DEAP情感分析数据库的一部分,可以在https://www.eecs.qmul.ac.uk/mmv/datasets/deap/上获取。使用32导联EEG和3导联ECG采集数据,采样率为512Hz。该数据集包含40个音乐视频片段。每个视频的持续时间为60s,并且在播放之前有一个120s的静息期。
参与者对情感体验的评分基于情绪环状模型。先前使用该数据集的研究表明,脑心交互可以作为区分高唤醒和低唤醒状态的生物标志物。基于此,本研究根据参与者对情绪体验的自我评分,特别是唤醒度的组中位数来选择试次。本研究选择了评分范围为6.1-7分的高唤醒组(11个试次)。
帕金森病数据集
该数据集包括15名帕金森病患者(7名男性和8名女性,平均年龄=63.2±8.2岁)和16名健康参与者(7名男性和9名女性&#x