【随机信号处理笔记】 Chapter2 随机变量

声明

本系列笔记为随机信号处理课程笔记,旨在帮助大伙复习使用,PPT截取部分为课堂PPT,本人能力不强,如果大伙发现了笔记中的错误,还请不吝赐教,我会及时修正

2.1 随机变量

根据随机变量X的取值可以分为:连续型、离散型

离散随机变量

概率密度函数: p [ x i ] p[x_i] p[xi]

概率分布函数: F ( x i ) = ∑ x i ≤ x p ( x i ) F(x_i)=\sum_{x_i\le x}p(x_i) F(xi)=xixp(xi)

连续随机变量

概率密度函数: p ( x ) = d   F ( x ) d   x p(x)=\frac {d\,F(x)} {d\,x} p(x)=dxdF(x)

概率分布函数: F ( x ) = ∫ − ∞ x p ( x )   d x F(x)=\int_{-\infty}^xp(x)\,dx F(x)=xp(x)dx

均匀分布: p ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其他 p(x)= \begin{cases} \frac 1 {b-a}, & a\le x \le b\\0,& \text{其他} \end{cases} p(x)={ba1,0,axb其他

高斯分布: p ( x ) = 1 2 π σ x e x p [ − ( x − m x ) 2 2 σ x 2 ] p(x)=\frac 1 {\sqrt{2\pi}\sigma_x}exp[-\frac {{(x-m_x)}^2} {2\sigma_x^2}] p(x)=2π σx1exp[2σx2(xmx)2]

瑞利分布: p ( x ) = x σ 2 e x p [ − x 2 2 σ 2 ] p(x)=\frac x {\sigma^2}exp[{-\frac {x^2}{2\sigma^2}}] p(x)=σ2xexp[2σ2x2]

二维随机变量

二维联合概率密度函数: p 2 ( x , y ) = ∂ 2 F 2 ( x , y ) ∂ x ∂ y p_2(x,y)=\frac {\partial^2F_2(x,y)} {\partial x\partial y} p2(x,y)=xy2F2(x,y)

二维联合概率分布函数: F ( x , y ) = ∫ − ∞ x ∫ − ∞ y p ( x , y )   d x d y F(x,y)=\int_{-\infty}^x\int_{-\infty}^y p(x,y)\,dxdy F(x,y)=xyp(x,y)dxdy

边缘分布函数: F ( x ) = ∫ − ∞ x   d x ∫ − ∞ ∞ p ( x , y )   d y F(x)=\int_{-\infty}^x\,dx\int_{-\infty}^\infty p(x,y)\,dy F(x)=xdxp(x,y)dy

二维概率密度函数隐含的一维概率密度函数信息:

p ( x ) = ∫ − ∞ ∞ p ( x , y )   d x p(x)=\int_{-\infty}^\infty p(x,y)\,dx p(x)=p(x,y)dx

相关系数 γ \gamma γ:表征二维随机变量之间的相关性,取值为[-1,1],当 γ \gamma γ=0时, p ( x , y ) = p ( x ) p ( y ) p(x,y)=p(x)p(y) p(x,y)=p(x)p(y),称为X与Y统计独立,为归一化协方差,表达式: γ = C X Y σ x σ y \gamma = \frac{C_{XY}}{\sigma x\sigma y} γ=σxσyCXY

随机变量的数字特征

让我们从矩的概念入手,矩的定义式为:

k阶原点矩: m k = E ( X k ) = ∫ − ∞ ∞ x k p ( x )   d x m_k=E(X^k)=\int_{-\infty}^\infty x^kp(x)\,dx mk=E(Xk)=xkp(x)dx

k阶中心矩: c k = E ( ( X − m X ) k ) = ∫ − ∞ ∞ ( X − m X ) k p ( x )   d x c_k=E({(X-m_X)}^k)=\int_{-\infty}^\infty {(X-m_X)}^kp(x)\,dx ck=E((XmX)k)=(XmX)kp(x)dx

其它数字特征均由矩式变化而来

数学期望:一阶原点矩 E ( X ) = ∫ − ∞ ∞ x p ( x )   d x = m x E(X)=\int_{-\infty}^\infty xp(x)\,dx=m_x E(X)=xp(x)dx=mx

  • E ( b X ) = b E ( x ) E(bX)=bE(x) E(bX)=bE(x)
  • E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
  • 若X,Y彼此统计独立, E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

方差:二阶中心矩 D ( X ) = ∫ − ∞ ∞ ( X − m X ) 2 p ( x )   d x D(X)=\int_{-\infty}^\infty {(X-m_X)}^2p(x)\,dx D(X)=(XmX)2p(x)dx

  • 方差反应了偏离程度、误差总功率
  • 方差=平均功率-均值平方 D ( X ) = E ( X 2 ) − E 2 ( X ) D(X)=E(X^2)-E^2(X) D(X)=E(X2)E2(X)
  • 标准差: σ x = E [ ( X − m x ) 2 ] \sigma_x=\sqrt{E[{(X-m_x)}^2]} σx=E[(Xmx)2]
  • D ( b X ) = b 2 D ( X ) D(bX)=b^2D(X) D(bX)=b2D(X)
  • 若X与Y统计独立, D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)

对于多维随机变量,有:

i+j阶混合矩: m i j = E ( X i Y j ) m_{ij}=E(X^iY^j) mij=E(XiYj)

i+j阶混合中心距: C i j = E [ ( X − m x ) i ( Y − m y ) j ] C_{ij}=E[(X-m_x)^i(Y-m_y)^j] Cij=E[(Xmx)i(Ymy)j]

协方差:二阶混合中心距 C X Y = E [ ( X − m x ) ( Y − m y ) ] C_{XY}=E[(X-m_x)(Y-m_y)] CXY=E[(Xmx)(Ymy)]

相关系数:归一化协方差 γ X Y = C X Y σ X σ Y \gamma_{XY}=\frac {C_{XY}} {\sigma_X\sigma_Y} γXY=σXσYCXY

  • 如果两个随机变量统计独立,则它们互不相关,有 γ X Y = 0 \gamma_{XY}=0 γXY=0,反之若两个随机变量互不相关,只有在X,Y服从正态分布时,它们统计独立。简言之,相关性反映的是协方差或相关系数,独立性反映概率分布函数之间的数学关系。
  • E(XY)=0,则X与Y正交
  • 相关系数反映了随机变量之间的依赖程度:
    在这里插入图片描述

2.2随机变量的变换

单X对单Y:已知 Y = g ( X ) Y=g(X) Y=g(X)得反函数 X = h ( Y ) X=h(Y) X=h(Y),有 p ( y ) = ∣ d x d y ∣ p [ h ( y ) ] p(y)=|\frac {dx} {dy}|p[h(y)] p(y)=dydxp[h(y)]

多X对单Y:由反函数 X i = h i ( y ) X_i=h_i(y) Xi=hi(y),得 p ( y ) = ∑ i ∣ d x i d y ∣ p [ h i ( y ) ] p(y)=\sum_i|\frac {dx_i} {dy}|p[h_i(y)] p(y)=idydxip[hi(y)]

二X对二Y: p ( y 1 , y 2 ) = p ( x 1 , x 2 ) J 2 p(y_1,y_2)=p(x_1,x_2)J_2 p(y1,y2)=p(x1,x2)J2

式中 J 2 J_2 J2为雅各比行列式 J 2 = ∣ ∂ ( x 1 , x 2 ) ∂ ( y 1 , y 2 ) ∣ = ∣ ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ∣ J_2=|\frac {\partial(x_1,x_2)}{\partial(y_1,y_2)}|=\begin{vmatrix}\frac {\partial x_1 }{\partial y_1}&\frac {\partial x_1}{\partial y_2}\\\frac {\partial x_2}{\partial y_1}&\frac {\partial x_2}{\partial y_2}\end{vmatrix} J2=(y1,y2)(x1,x2)=y1x1y1x2y2x1y2x2

两道经典例题,证明了电子系统中复高斯噪声幅度所服从瑞利分布相位服从均匀分布、独立变量和概率为各自概率相卷积
在这里插入图片描述

在这里插入图片描述

2.3随机变量的特征函数

特征函数: Φ X ( ω ) = E [ e j ω X ] = ∫ − ∞ ∞ e j ω x p ( x )   d x \Phi_X(\omega)=E[e^{j\omega X}]=\int_{-\infty}^\infty e^{j\omega x}p(x)\,dx ΦX(ω)=E[ejωX]=ejωxp(x)dx,是 e j ω X e^{j\omega X} ejωX的数学期望

特征函数与概率密度函数是一对傅里叶变换

即: p ( x ) = 1 2 π ∫ − ∞ ∞ Φ X ( ω ) e − j ω x   d ω p(x)=\frac 1 {2\pi}\int_{-\infty}^\infty\Phi _X(\omega)e^{-j\omega x}\,d\omega p(x)=2π1ΦX(ω)ejωxdω

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值